Human melanocyte senescence and melanoma susceptibility genes

[1]  G. Peters,et al.  p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. , 2003, Journal of the National Cancer Institute.

[2]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[3]  L. Chin,et al.  p16(Ink4a) in melanocyte senescence and differentiation. , 2002, Journal of the National Cancer Institute.

[4]  G. Mann,et al.  Mutations in the INK4a/ARF Melanoma Susceptibility Locus Functionally Impair p14ARF * , 2001, The Journal of Biological Chemistry.

[5]  J. Malvehy,et al.  A melanoma-associated germline mutation in exon 1β inactivates p14ARF , 2001, Oncogene.

[6]  R. Willemze,et al.  Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. , 2001, The Journal of investigative dermatology.

[7]  R. Alani,et al.  Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Sidransky,et al.  p16(MTS-1/CDKN2/INK4a) in cancer progression. , 2001, Experimental cell research.

[9]  B. Gilchrest,et al.  Update on genetic events in the pathogenesis of melanoma , 2001, Current opinion in oncology.

[10]  G. Peters,et al.  Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence , 2001, Nature.

[11]  E. Blackburn,et al.  Telomere states and cell fates , 2000, Nature.

[12]  G. Babcock,et al.  PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum , 2000, In Vitro Cellular & Developmental Biology - Animal.

[13]  R. Halaban,et al.  Deregulated E2f Transcriptional Activity in Autonomously Growing Melanoma Cells , 2000, The Journal of experimental medicine.

[14]  R. DePinho,et al.  A critical role for telomeres in suppressing and facilitating carcinogenesis. , 2000, Current opinion in genetics & development.

[15]  E. Medrano,et al.  Activation of a cAMP pathway and induction of melanogenesis correlate with association of p16(INK4) and p27(KIP1) to CDKs, loss of E2F-binding activity, and premature senescence of human melanocytes. , 1999, Experimental cell research.

[16]  W. Stolz,et al.  Increase in telomerase activity during progression of melanocytic cells from melanocytic naevi to malignant melanomas , 1999, Archives of Dermatological Research.

[17]  R. DePinho,et al.  The INK4A/ARF locus and its two gene products. , 1999, Current opinion in genetics & development.

[18]  T. Kiyono,et al.  Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells , 1998, Nature.

[19]  G. Walker,et al.  Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets , 1998, Genes, chromosomes & cancer.

[20]  M. Piepkorn,et al.  Expression of the tumor suppressor gene product p16INK4 in benign and malignant melanocytic lesions. , 1998, The Journal of investigative dermatology.

[21]  Richard A. Ashmun,et al.  Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF , 1997, Cell.

[22]  S. Lowe,et al.  Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a , 1997, Cell.

[23]  G. Hannon,et al.  Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[25]  C. Elmets,et al.  Reduced growth factor requirements and accelerated cell-cycle kinetics in adult human melanocytes transformed with SV40 large T antigen. , 1995, The Journal of investigative dermatology.

[26]  M. Herlyn,et al.  In Vitro Growth Patterns of Normal Human Melanocytes and Melanocytes from Different Stages of Melanoma Progression , 1992, Journal of immunotherapy : official journal of the Society for Biological Therapy.

[27]  A. Halpern,et al.  Model predicting survival in stage I melanoma based on tumor progression. , 1989, Journal of the National Cancer Institute.

[28]  P. Duray,et al.  Human melanocytes cultured from nevi and melanomas. , 1986, The Journal of investigative dermatology.

[29]  B. Gilchrest,et al.  Selective cultivation of human melanocytes from newborn and adult epidermis. , 1984, The Journal of investigative dermatology.

[30]  S. Pomerantz,et al.  Regulation of tyrosinase in human melanocytes grown in culture , 1983, The Journal of cell biology.

[31]  M. Eisinger,et al.  Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Pawelek,et al.  Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells , 1975, Nature.

[33]  W. Mooi,et al.  Biopsy Pathology of Melanocytic Disorders , 1992, Biopsy Pathology Series.