Influence of the Generation Distribution on the Calculated EBIC Contrast of Line Defects

Images of representative line defects in silicon, as obtained by the electron beam induced current (EBIC) mode of the scanning electron microscope, are computer simulated using two generation schemes: the uniform generation sphere and a modified Gaussian distribution. The simulations are based on an analytical model of EBIC contrast at defects, which makes use of the solution of the minority-carrier diffusion problem in the defect-free semiconductor. A comparison between calculated and experimental images indicates that the Gaussian approximation gives a better description of the observed contrast. Residual differences between theory and experiment are attributed to depletion layer effects. Abbildungen typischer Liniendefekte in Silizium, die durch Anwendung der EBIC-Methode des Raster-Elektronenmikroskops erhalten werden, werden Computer-simuliert unter Verwendung zweier Erzeugungsnaherungen: eine Kugel gleichmasiger Generation und eine modifizierte Gaussche Verteilung. Die Simulationen gehen von einem analytischen Modell des EBIC-Kontrasts an Defekten aus, wobei die Losung des Diffusionsproblems fur Minoritatsladungstrager im defektfreien Halbleiter verwendet wird. Der Vergleich berechneter und experimenteller Abbildungen weist darauf hin, das die Gaussche Naherung eine bessere Beschreibung des beobachteten Kontrasts ergibt. Restunterschiede zwischen Theorie und Experiment werden auf Effekte in der Verarmungszone zuruckgefuhrt.

[1]  H. Raidt,et al.  On the analysis of EBIC contrast of crystal defects , 1980 .

[2]  G. Caledonia,et al.  Spatial Distribution of the Fluorescent Radiation Emission Caused by an Electron Beam , 1970 .

[3]  S. Kawado Scanning Electron Microscopic Observation of Oxidation-Induced Stacking Faults in Silicon , 1980 .

[4]  L. Pasemann A contribution to the theory of the ebic contrast of lattice defects in semiconductors , 1981 .

[5]  C. Donolato An analytical model of SEM and STEM charge collection images of dislocations in thin semiconductor layers: I. Minority carrier generation, diffusion, and collection , 1981 .

[6]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[7]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[8]  T. E. Everhart,et al.  Experimental and theoretical study of energy dissipation profiles of keV electrons in polymethylmethacrylate , 1975 .

[9]  H. Fitting,et al.  Electron penetration and energy transfer in solid targets , 1977 .

[10]  M. Kittler,et al.  On the sensitivity of the EBIC technique as applied to defect investigations in silicon , 1981 .

[11]  C. Donolato,et al.  Computer simulation of SEM electron beam induced current images of dislocations and stacking faults , 1980 .

[12]  Timothy K. Maugel,et al.  Quantitative scanning electron microscopy , 1976 .

[13]  T. E. Everhart,et al.  Determination of Kilovolt Electron Energy Dissipation vs Penetration Distance in Solid Materials , 1971 .

[14]  M. Kittler On the characterization of electrically active inhomogeneities in semiconductor silicon by charge collection at schottky barriers using the SEM-EBIC (II). Contrast due to defects , 1980 .

[15]  R. Berti,et al.  On the EBIC Contrast of Dislocations in Si , 1982, February 16.

[16]  E. S. Shire,et al.  Classical electricity and magnetism , 1960 .

[17]  A. G. Cullis The Microscopy Of Semiconducting Materials , 1980 .