THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD

We present a complete 12CO J = 1 → 0 map of the prominent molecular ridge in the Large Magellanic Cloud (LMC) obtained with the 22 m ATNF Mopra Telescope. The region stretches southward by ∼2° (or 1.7 kpc) from 30 Doradus, the most vigorous star-forming region in the Local Group. The location of this molecular ridge is unique insofar as it allows us to study the properties of molecular gas as a function of the ambient radiation field in a low-metallicity environment. We find that the physical properties of CO-emitting clumps within the molecular ridge do not vary with the strength of the far-ultraviolet radiation field. Since the peak CO brightness of the clumps shows no correlation with the radiation field strength, the observed constant value for CO-to-H2 conversion factor along the ridge seems to require an increase in the kinetic temperature of the molecular gas that is offset by a decrease in the angular filling factor of the CO emission. We find that the difference between the CO-to-H2 conversion factor in the molecular ridge and the outer Milky Way is smaller than has been reported by previous studies of the CO emission: applying the same cloud identification and analysis methods to our CO observations of the LMC molecular ridge and CO data from the outer Galaxy survey by Dame et al., we find that the average CO-to-H2 conversion factor in the molecular ridge is XCO ≃ (3.9 ± 2.5) × 1020 cm−2 (K km s−1)−1, approximately twice the value that we determine for the outer Galaxy clouds. The mass spectrum and the scaling relations between the properties of the CO clumps in the molecular ridge are similar, but not identical, to those that have been established for Galactic molecular clouds.

[1]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[2]  R. Indebetouw,et al.  THE LARGE MAGELLANIC CLOUD'S LARGEST MOLECULAR CLOUD COMPLEX: SPITZER ANALYSIS OF EMBEDDED STAR FORMATION , 2008 .

[3]  W. Reach,et al.  Extinction and dust/gas ratio in LMC molecular clouds , 2008 .

[4]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[5]  J. Ott,et al.  The Molecular Ridge Close to 30 Doradus in the Large Magellanic Cloud , 2008, Publications of the Astronomical Society of Australia.

[6]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[7]  H. Yamamoto,et al.  Submillimeter line emission from LMC N159W: a dense, clumpy PDR in a low metallicity environment , 2008, 0802.1929.

[8]  H. Yamamoto,et al.  Clumpy photon-dominated regions in Carina - I. [C I] and mid-J CO lines in two 4'$\times$4' fields , 2007, 0711.1320.

[9]  K. Sheth,et al.  Comparative Analysis of Molecular Clouds in M31, M33, and the Milky Way , 2007, 0710.4559.

[10]  G. Garay,et al.  Submillimeter Observations of Giant Molecular Clouds in the Large Magellanic Cloud: Temperature and Density as Determined from J = 3-2 and J = 1-0 Transitions of CO , 2007, 0710.4202.

[11]  F. Boulanger,et al.  Millimeter dust continuum emission revealing the true mass of giant molecular clouds in the Small Magellanic Cloud , 2007, 0704.3257.

[12]  L. Blitz,et al.  Extinction in the Large Magellanic Cloud , 2007, astro-ph/0703421.

[13]  A. Bolatto,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD: FIR EMISSION AND COLD GAS IN THE SMC , 2006 .

[14]  Usa,et al.  Study of photon dominated regions in Cepheus B , 2006, astro-ph/0606268.

[15]  A. Bolatto,et al.  Molecular Gas in the Low-Metallicity, Star-forming Dwarf IC 10 , 2006, astro-ph/0602056.

[16]  Erik Rosolowsky,et al.  Bias‐free Measurement of Giant Molecular Cloud Properties , 2006, astro-ph/0601706.

[17]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[18]  E. Rosolowsky,et al.  The Mass Spectra of Giant Molecular Clouds in the Local Group , 2005, astro-ph/0508679.

[19]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[20]  T. Wong,et al.  Beam Size, Shape and Efficiencies for the ATNF Mopra Radio Telescope at 86–115 GHz , 2005, Publications of the Astronomical Society of Australia.

[21]  R. Gruendl,et al.  A 4.8 and 8.6 GHz Survey of the Large Magellanic Cloud. I. The Images , 2004, astro-ph/0410683.

[22]  A. Bolatto,et al.  Unusual CO Line Ratios and Kinematics in the N83/N84 Region of the Small Magellanic Cloud , 2003, astro-ph/0306144.

[23]  G. Garay,et al.  Results of the ESO-SEST Key Programme on CO in the Magellanic Clouds - IX. The giant LMC HII region complex N 11 , 2002, astro-ph/0211450.

[24]  C. R. Kerton,et al.  An Outer Galaxy Molecular Cloud Catalog , 2003 .

[25]  Y. Fukui,et al.  On the Mass Spectrum of Giant Molecular Clouds in the Large Magellanic Cloud , 2001 .

[26]  M. Rubio,et al.  A CO Survey of the LMC with NANTEN: II. Catalog of Molecular Clouds , 2001 .

[27]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[28]  M. Cioni,et al.  Magellanic Cloud Structure from Near-Infrared Surveys. I. The Viewing Angles of the Large Magellanic Cloud , 2001, astro-ph/0105339.

[29]  A. Lazarian,et al.  Velocity and Density Spectra of the Small Magellanic Cloud , 2001, astro-ph/0102191.

[30]  A. Weiss,et al.  The Effect of Violent Star Formation on the State of the Molecular Gas in M 82 , 2000, astro-ph/0010541.

[31]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[32]  G. P. Forêts,et al.  Molecular Hydrogen in Space: Observations and Models , 2000 .

[33]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[34]  van der Thijs Hulst,et al.  Cool dust and gas in the Small Magellanic Cloud , 2000 .

[35]  F. Israel Extragalactic H2 and its variable relation to CO , 2000, astro-ph/0001250.

[36]  S. Asayama,et al.  First Results of a CO Survey of the Large Magellanic Cloud with NANTEN; Giant Molecular Clouds as Formation Sites of Populous Clusters , 1999 .

[37]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[38]  HCN and HCO+ images of the Orion Bar photodissociation region , 1998 .

[39]  S. Terebey,et al.  The Anatomy of the Perseus Spiral Arm:12CO and IRAS Imaging Observations of the W3-W4-W5 Cloud Complex , 1998 .

[40]  T. Nakagawa,et al.  Far-Infrared [C II] Line Survey Observations of the Galactic Plane , 1997, astro-ph/9712333.

[41]  D. Jaffe,et al.  Molecular Cloud Structure in the Magellanic Clouds: Effect of Metallicity , 1997, astro-ph/9712158.

[42]  A. Ferrara,et al.  Dust-to-Gas Ratio and Metal Abundance in Dwarf Galaxies , 1997, astro-ph/9705037.

[43]  G. Garay,et al.  Results of the ESO-SEST key programme: CO in the Magellanic Clouds - VI. The 30 Dor Complex , 1997 .

[44]  Jonathan P. Williams,et al.  The Luminosity Function of OB Associations in the Galaxy , 1997 .

[45]  B. Elmegreen A Fractal Origin for the Mass Spectrum of Interstellar Clouds. II. Cloud Models and Power-Law Slopes , 1996, astro-ph/0112528.

[46]  A. Poglitsch,et al.  C + Emission from the Magellanic Clouds. I. The Bright H II Region Complexes N159 and N160 , 1996 .

[47]  S. Sakamoto Effects of molecular cloud properties on the CO-to-H2 conversion factor. , 1996 .

[48]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[49]  Takuji Tsujimoto,et al.  CO-to-H2 Conversion Factor in Galaxies , 1996 .

[50]  C. D. Wilson,et al.  The Metallicity Dependence of the CO-to-H2 Conversion Factor from Observations of Local Group Galaxies , 1995, astro-ph/9506103.

[51]  P. Hodge,et al.  GR 8: CO-to-H 2 Conversion Factor at Extremely Low Metallicity , 1995 .

[52]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[53]  A. Tielens,et al.  THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .

[54]  G. Garay,et al.  A (C-12)O survey of the Small Magellanic Cloud , 1991 .

[55]  John W. Fowler,et al.  A maximum correlation method for image construction of IRAS survey data , 1990 .

[56]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[57]  R. Dettmar,et al.  Carbon monoxide (CO) in the Magellanic irregular galaxy NGC 55 and the N(H2)/W(CO) ratio in irregular galaxies , 1989 .

[58]  J. Stutzki,et al.  High spatial resolution isotopic CO and CS observations of M17 SW - The clumpy structure of the molecular cloud core , 1989 .

[59]  B. Elmegreen A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass , 1989 .

[60]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[61]  G. Helou,et al.  IRAS observations of galaxies in the Virgo cluster area , 1988 .

[62]  A. Wolfendale,et al.  Corrections to virial estimates of molecular cloud masses , 1988 .

[63]  Gordon J. Stacey,et al.  Submillimeter and far-infrared line observations of M17 SW - A clumpy molecular cloud penetrated by ultraviolet radiation , 1988 .

[64]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[65]  Alistair R. Walker,et al.  Cepheids as Distance Indicators , 1999 .

[66]  R. Hill,et al.  Vacuum ultraviolet images of the Large Magellanic Cloud , 1987 .

[67]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[68]  B. Elmegreen,et al.  The largest molecular cloud complexes in the first galactic quadrant , 1986 .

[69]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[70]  Sidney van den Bergh,et al.  Structure and evolution of the Magellanic Clouds , 1984 .

[71]  P. Myers Dense cores in dark clouds. III. Subsonic turbulence. , 1983 .

[72]  B. Westerlund The Magellanic Clouds , 1997 .

[73]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[74]  L. Vigroux The Magellanic Clouds. , 1979 .

[75]  B. Draine Photoelectric heating of interstellar gas , 1978 .