THE CARNEGIE–SPITZER–IMACS REDSHIFT SURVEY OF GALAXY EVOLUTION SINCE z = 1.5. I. DESCRIPTION AND METHODOLOGY

We describe the Carnegie–Spitzer–IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σz/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σz/(1 + z) = 0.011 for galaxies at 0.7 ⩽ z ⩽ 0.9, and σz/(1 + z) = 0.014 for galaxies at 0.9 ⩽ z ⩽ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σz/(1 + z) = 0.008 and σz/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

[1]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.

[2]  M. Blanton,et al.  PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2 , 2013, 1302.2920.

[3]  M. Blanton,et al.  PRIMUS: AN OBSERVATIONALLY MOTIVATED MODEL TO CONNECT THE EVOLUTION OF THE ACTIVE GALACTIC NUCLEUS AND GALAXY POPULATIONS OUT TO z ∼ 1 , 2013, 1301.1689.

[4]  M. Blanton,et al.  PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.

[5]  D. Kelson,et al.  A DIRECT MEASUREMENT OF HIERARCHICAL GROWTH IN GALAXY GROUPS SINCE z ∼ 1 , 2012, 1201.1009.

[6]  M. Blanton,et al.  PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR , 2011, 1107.4368.

[7]  Carnegie,et al.  THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS,, , 2011, 1107.3147.

[8]  H. Hoekstra,et al.  THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.

[9]  Marijn Franx,et al.  THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS , 2011, 1106.6054.

[10]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[11]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[12]  H. Hildebrandt,et al.  TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.

[13]  Carnegie,et al.  THE STAR-FORMATION-RATE–DENSITY RELATION AT 0.6 < z < 0.9 AND THE ROLE OF STAR-FORMING GALAXIES , 2011, 1104.0934.

[14]  D. Kelson,et al.  IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .

[15]  P. McMillan,et al.  Mass models of the Milky Way , 2011, 1102.4340.

[16]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[17]  M. Sawicki,et al.  USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2 , 2010, 1007.4951.

[18]  D. Kocevski,et al.  THE ORIGIN OF [O ii] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS , 2010, 1003.1780.

[19]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[20]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[21]  R. Quadri,et al.  QUANTIFYING PHOTOMETRIC REDSHIFT ERRORS IN THE ABSENCE OF SPECTROSCOPIC REDSHIFTS , 2009, 0910.2704.

[22]  Leiden,et al.  THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z ∼ 0.8 , 2009, 0910.0837.

[23]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[24]  Leiden,et al.  A WIDE-FIELD STUDY OF THE z ∼ 0.8 CLUSTER RX J0152.7−1357: THE ROLE OF ENVIRONMENT IN THE FORMATION OF THE RED SEQUENCE , 2008, 0812.2021.

[25]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[26]  S. Wuyts,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.

[27]  A. M. Swinbank,et al.  A pilot survey for KX QSOs in the UKIDSS Ultra Deep Survey Field , 2008, 0806.2538.

[28]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 . I. The stellar metallicity , 2008, 0801.1193.

[29]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[30]  A. Connolly,et al.  The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .

[31]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[32]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[33]  A. Connolly,et al.  The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.

[34]  P. J. Huber Robust Statistics: Huber/Robust Statistics , 2005 .

[35]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[36]  Ph. Héraudeau,et al.  SF2A-2005: Semaine de l'Astrophysique Francaise , 2005 .

[37]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[38]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[39]  L. Kewley,et al.  [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.

[40]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[41]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[42]  Ronald G. Probst,et al.  NEWFIRM: the widefield IR imager for NOAO 4-m telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[43]  V. Ripepi,et al.  Virmos-VLT deep survey (VVDS) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[44]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[45]  S. Serjeant,et al.  SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.

[46]  K. Glazebrook,et al.  Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.

[47]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[48]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[49]  P. Hall,et al.  Galaxy Groups at Intermediate Redshift , 2000, astro-ph/0008201.

[50]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[51]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[52]  R. Abraham,et al.  The Average Mass Profile of Galaxy Clusters , 1997, astro-ph/9703107.

[53]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[54]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[55]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[56]  E. Wright,et al.  Studying Starlight from Distant Galaxies with SIRTF , 1994, astro-ph/9407055.

[57]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[58]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[59]  B. Tinsley Stellar evolution in elliptical galaxies. , 1972 .