THE CARNEGIE–SPITZER–IMACS REDSHIFT SURVEY OF GALAXY EVOLUTION SINCE z = 1.5. I. DESCRIPTION AND METHODOLOGY
暂无分享,去创建一个
D. Kelson | S. Shectman | P. McCarthy | A. Dressler | J. Crane | J. Mulchaey | R. Quadri | Rik J. Williams | E. Villanueva
[1] M. Blanton,et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING , 2013, 1303.2672.
[2] M. Blanton,et al. PRIMUS: INFRARED AND X-RAY AGN SELECTION TECHNIQUES AT 0.2 < z < 1.2 , 2013, 1302.2920.
[3] M. Blanton,et al. PRIMUS: AN OBSERVATIONALLY MOTIVATED MODEL TO CONNECT THE EVOLUTION OF THE ACTIVE GALACTIC NUCLEUS AND GALAXY POPULATIONS OUT TO z ∼ 1 , 2013, 1301.1689.
[4] M. Blanton,et al. PRIMUS: CONSTRAINTS ON STAR FORMATION QUENCHING AND GALAXY MERGING, AND THE EVOLUTION OF THE STELLAR MASS FUNCTION FROM z = 0–1 , 2013, 1301.1688.
[5] D. Kelson,et al. A DIRECT MEASUREMENT OF HIERARCHICAL GROWTH IN GALAXY GROUPS SINCE z ∼ 1 , 2012, 1201.1009.
[6] M. Blanton,et al. PRIMUS: THE DEPENDENCE OF AGN ACCRETION ON HOST STELLAR MASS AND COLOR , 2011, 1107.4368.
[7] Carnegie,et al. THE UVJ SELECTION OF QUIESCENT AND STAR-FORMING GALAXIES: SEPARATING EARLY- AND LATE-TYPE GALAXIES AND ISOLATING EDGE-ON SPIRALS,, , 2011, 1107.3147.
[8] H. Hoekstra,et al. THE GEMINI CLUSTER ASTROPHYSICS SPECTROSCOPIC SURVEY (GCLASS): THE ROLE OF ENVIRONMENT AND SELF-REGULATION IN GALAXY EVOLUTION AT z ∼ 1 , 2011, 1112.3655.
[9] Marijn Franx,et al. THE DIMINISHING IMPORTANCE OF MAJOR GALAXY MERGERS AT HIGHER REDSHIFTS , 2011, 1106.6054.
[10] B. Lundgren,et al. THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.
[11] Kyoung-Soo Lee,et al. THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.
[12] H. Hildebrandt,et al. TRACING THE STAR-FORMATION–DENSITY RELATION TO z ∼ 2 , 2011, 1104.1426.
[13] Carnegie,et al. THE STAR-FORMATION-RATE–DENSITY RELATION AT 0.6 < z < 0.9 AND THE ROLE OF STAR-FORMING GALAXIES , 2011, 1104.0934.
[14] D. Kelson,et al. IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade , 2011 .
[15] P. McMillan,et al. Mass models of the Milky Way , 2011, 1102.4340.
[16] M. Blanton,et al. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.
[17] M. Sawicki,et al. USING THE 1.6 μm BUMP TO STUDY REST-FRAME NEAR-INFRARED-SELECTED GALAXIES AT REDSHIFT 2 , 2010, 1007.4951.
[18] D. Kocevski,et al. THE ORIGIN OF [O ii] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS , 2010, 1003.1780.
[19] D. Thompson,et al. GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.
[20] D. Thompson,et al. THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.
[21] R. Quadri,et al. QUANTIFYING PHOTOMETRIC REDSHIFT ERRORS IN THE ABSENCE OF SPECTROSCOPIC REDSHIFTS , 2009, 0910.2704.
[22] Leiden,et al. THE DEPENDENCE OF STAR FORMATION RATES ON STELLAR MASS AND ENVIRONMENT AT z ∼ 0.8 , 2009, 0910.0837.
[23] B. Garilli,et al. zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.
[24] Leiden,et al. A WIDE-FIELD STUDY OF THE z ∼ 0.8 CLUSTER RX J0152.7−1357: THE ROLE OF ENVIRONMENT IN THE FORMATION OF THE RED SEQUENCE , 2008, 0812.2021.
[25] M. Franx,et al. SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .
[26] S. Wuyts,et al. THE EVOLUTION OF THE STELLAR MASS FUNCTION OF GALAXIES FROM z = 4.0 AND THE FIRST COMPREHENSIVE ANALYSIS OF ITS UNCERTAINTIES: EVIDENCE FOR MASS-DEPENDENT EVOLUTION , 2008, 0811.1773.
[27] A. M. Swinbank,et al. A pilot survey for KX QSOs in the UKIDSS Ultra Deep Survey Field , 2008, 0806.2538.
[28] A. Cimatti,et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2 . I. The stellar metallicity , 2008, 0801.1193.
[29] S. More,et al. Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.
[30] A. Connolly,et al. The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2006 .
[31] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[32] H. Mo,et al. Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.
[33] A. Connolly,et al. The DEEP2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1 , 2005, astro-ph/0506041.
[34] P. J. Huber. Robust Statistics: Huber/Robust Statistics , 2005 .
[35] C. Maraston. Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.
[36] Ph. Héraudeau,et al. SF2A-2005: Semaine de l'Astrophysique Francaise , 2005 .
[37] Patrick J. McCarthy,et al. The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.
[38] J. Brinkmann,et al. The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.
[39] L. Kewley,et al. [O II] as a Star Formation Rate Indicator , 2004, astro-ph/0401172.
[40] L. Moustakas,et al. Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.
[41] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[42] Ronald G. Probst,et al. NEWFIRM: the widefield IR imager for NOAO 4-m telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.
[43] V. Ripepi,et al. Virmos-VLT deep survey (VVDS) , 2003, SPIE Astronomical Telescopes + Instrumentation.
[44] D. Weinberg,et al. The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.
[45] S. Serjeant,et al. SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey , 2001, astro-ph/0305375.
[46] K. Glazebrook,et al. Microslit Nod‐Shuffle Spectroscopy: A Technique for Achieving Very High Densities of Spectra , 2000, astro-ph/0011104.
[47] P. Kroupa. On the variation of the initial mass function , 2000, astro-ph/0009005.
[48] E. Bell,et al. Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.
[49] P. Hall,et al. Galaxy Groups at Intermediate Redshift , 2000, astro-ph/0008201.
[50] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[51] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[52] R. Abraham,et al. The Average Mass Profile of Galaxy Clusters , 1997, astro-ph/9703107.
[53] Zhengyou Zhang,et al. Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..
[54] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[55] Paul Dierckx,et al. Curve and surface fitting with splines , 1994, Monographs on numerical analysis.
[56] E. Wright,et al. Studying Starlight from Distant Galaxies with SIRTF , 1994, astro-ph/9407055.
[57] T. Beers,et al. Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .
[58] K. Horne,et al. AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .
[59] B. Tinsley. Stellar evolution in elliptical galaxies. , 1972 .