A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression

[1]  F. Grus,et al.  Proteomic identification of the heterogeneous nuclear ribonucleoprotein K as irradiation responsive protein related to migration. , 2015, Journal of proteomics.

[2]  J. Menten,et al.  Defining pseudoprogression in glioblastoma multiforme , 2013, European journal of neurology.

[3]  Kiyohiro Houkin,et al.  IDH1 mutation as a potential novel biomarker for distinguishing pseudoprogression from true progression in patients with glioblastoma treated with temozolomide and radiotherapy , 2013, Brain Tumor Pathology.

[4]  W. Rooney,et al.  Pseudoprogression of glioblastoma after chemo- and radiation therapy: diagnosis by using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. , 2013, Radiology.

[5]  Yongmei Song,et al.  Expression of β-catenin and E- and N-cadherin in human brainstem gliomas and clinicopathological correlations , 2013, The International journal of neuroscience.

[6]  K. Dry,et al.  ATM-dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage , 2013, Cell cycle.

[7]  G. Mazzucchelli,et al.  Sparc-like protein 1 is a new marker of human glioma progression. , 2012, Journal of proteome research.

[8]  S. Étienne-Manneville,et al.  N-cadherin expression level as a critical indicator of invasion in non-epithelial tumors , 2012, Cell adhesion & migration.

[9]  Cem Parlak,et al.  Pseudoprogression in Patients With Glioblastoma Multiforme After Concurrent Radiotherapy and Temozolomide , 2012, American journal of clinical oncology.

[10]  B. Devaux,et al.  Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor , 2012, Stem cells.

[11]  T. Luider,et al.  A Proteome Comparison Between Physiological Angiogenesis and Angiogenesis in Glioblastoma , 2012, Molecular & Cellular Proteomics.

[12]  A. Sorensen,et al.  Pseudoprogression and Pseudoresponse: Imaging Challenges in the Assessment of Posttreatment Glioma , 2011, American Journal of Neuroradiology.

[13]  O. De Witte,et al.  High levels of cellular proliferation predict pseudoprogression in glioblastoma patients , 2011, International journal of oncology.

[14]  Uwe Ohler,et al.  Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. , 2011, Molecular cell.

[15]  Hyun-Cheol Kang,et al.  Pseudoprogression in patients with malignant gliomas treated with concurrent temozolomide and radiotherapy: potential role of p53 , 2011, Journal of Neuro-Oncology.

[16]  P. Kondaiah,et al.  Identification of Potential Serum Biomarkers of Glioblastoma: Serum Osteopontin Levels Correlate with Poor Prognosis , 2010, Cancer Epidemiology, Biomarkers & Prevention.

[17]  Timothy D Johnson,et al.  Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  Susan M. Chang,et al.  Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  Bart Neyns,et al.  Pseudoprogression after radiotherapy with concurrent temozolomide for high-grade glioma: clinical observations and working recommendations. , 2009, Surgical neurology.

[20]  R. Jensen,et al.  Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target , 2009, Journal of Neuro-Oncology.

[21]  Z. Kohutek,et al.  ADAM-10-Mediated N-Cadherin Cleavage Is Protein Kinase C-α Dependent and Promotes Glioblastoma Cell Migration , 2009, The Journal of Neuroscience.

[22]  M. Chamberlain Pseudoprogression in glioblastoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  A. Brandes,et al.  Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. , 2008, Neuro-oncology.

[24]  Shigeaki Higashiyama,et al.  Diagnostic Accuracy of 11C-Methionine PET for Differentiation of Recurrent Brain Tumors from Radiation Necrosis After Radiotherapy , 2008, Journal of Nuclear Medicine.

[25]  A. Brandes,et al.  MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  P. Anastasiadis,et al.  The role of cadherins and catenins in gliomagenesis. , 2006, Neurosurgical focus.

[27]  Shijuan Gao,et al.  Microwave-assisted Protein Preparation and Enzymatic Digestion in Proteomics*S , 2006, Molecular & Cellular Proteomics.

[28]  Graeme I Murray,et al.  The roles of heterogeneous nuclear ribonucleoproteins in tumour development and progression. , 2006, Biochimica et biophysica acta.

[29]  D. Zagzag,et al.  Angiogenesis in Gliomas: Biology and Molecular Pathophysiology , 2005, Brain pathology.

[30]  E. Schmidt,et al.  hnRNP K Binds a Core Polypyrimidine Element in the Eukaryotic Translation Initiation Factor 4E (eIF4E) Promoter, and Its Regulation of eIF4E Contributes to Neoplastic Transformation , 2005, Molecular and Cellular Biology.

[31]  H. Amthauer,et al.  123I-IMT SPECT and 1HMR-Spectroscopy at 3.0T in the Differential Diagnosis of Recurrent or Residual Gliomas: A Comparative Study , 2004, Journal of Neuro-Oncology.

[32]  M. J. van den Bent,et al.  Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression , 2004, Neurology.

[33]  Jörg-Christian Tonn,et al.  Value of O-(2-[18F]fluoroethyl)-l-tyrosine PET for the diagnosis of recurrent glioma , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[34]  M. Duffy,et al.  Elevated expression and altered processing of fibulin-1 protein in human breast cancer , 2003, British Journal of Cancer.

[35]  P. Pujol,et al.  Increased immunostaining of fibulin-1, an estrogen-regulated protein in the stroma of human ovarian epithelial tumors. , 1998, The American journal of pathology.

[36]  T. Cascino,et al.  Response criteria for phase II studies of supratentorial malignant glioma. , 1990, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  V. Levin,et al.  Evaluation of malignant glioma patients during the postirradiation period. , 1979, Journal of neurosurgery.

[38]  S. Heiland,et al.  Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. , 2015, Neuro-oncology.

[39]  井戸 一憲 Expression of vascular endothelial growth factor-A and mRNA stability factor HuR in human astrocytic tumors , 2009 .

[40]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[41]  Koen Van Laere,et al.  Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value , 2004, European Journal of Nuclear Medicine and Molecular Imaging.