Context-aware and quality-aware algorithms for efficient mobile object management

The management of positions of mobile objects is an essential prerequisite for many context-aware systems such as advanced traffic management systems or personal assistance systems. In this paper, we present two approaches for the scalable tracking of mobile object trajectories and the efficient processing of continuous spatial range queries, respectively. We show in detail how both approaches utilize the basic concepts of accuracy relaxation and utilization of context information, such as movement predictions, to minimize the number of position updates, the size of trajectory data, and the number of energy-consuming position sensing operations.

[1]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[2]  M. Iri,et al.  Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .

[3]  Jianliang Xu,et al.  A generic framework for monitoring continuous spatial queries over moving objects , 2005, SIGMOD '05.

[4]  Kien A. Hua,et al.  Real-time processing of range-monitoring queries in heterogeneous mobile databases , 2006, IEEE Transactions on Mobile Computing.

[5]  Jörg Roth,et al.  Accessing Location Data in Mobile Environments ? The Nimbus Location Model , 2003, Mobile HCI Workshop on Mobile and Ubiquitous Information Access.

[6]  J. Rankin,et al.  An error model for sensor simulation GPS and differential GPS , 1994, Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS'94.

[7]  Kurt Rothermel,et al.  A map-based dead-reckoning protocol for updating location information , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[8]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[9]  Harald Trost Computational Morphology , 2003 .

[10]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[11]  Walid G. Aref,et al.  Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects , 2002, IEEE Trans. Computers.

[12]  Roger Zimmermann,et al.  Distributed Continuous Range Query Processing on Moving Objects , 2006, DEXA.

[13]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.

[14]  Christian S. Jensen,et al.  Techniques for efficient road-network-based tracking of moving objects , 2005, IEEE Transactions on Knowledge and Data Engineering.

[15]  Fritz Hohl,et al.  Next century challenges: Nexus—an open global infrastructure for spatial-aware applications , 1999, MobiCom.

[16]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[17]  Frank Dürr,et al.  Remote real-time trajectory simplification , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[18]  Bo Song,et al.  A Map Matching Algorithm in GPS-based Car Navigation System , 2007, Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007).

[19]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[20]  Christian Bettstetter,et al.  Mobility modeling in wireless networks: categorization, smooth movement, and border effects , 2001, MOCO.

[21]  Kurt Rothermel,et al.  Energy-efficient Tracking of Mobile Objects with Early Distance-based Reporting , 2007, 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous).

[22]  Jing Li,et al.  Accuracy and reliability of map-matched GPS coordinates: the dependence on terrain model resolution and interpolation algorithm , 2005, Comput. Geosci..

[23]  Ouri Wolfson,et al.  On-line data reduction and the quality of history in moving objects databases , 2006, MobiDE '06.

[24]  A. Prasad Sistla,et al.  Updating and Querying Databases that Track Mobile Units , 1999, Distributed and Parallel Databases.

[25]  Reynold Cheng,et al.  Processing Continuous Range Queries with Spatiotemporal Tolerance , 2011, IEEE Transactions on Mobile Computing.

[26]  Reynold Cheng,et al.  Energy-Efficient Monitoring of Mobile Objects with Uncertainty-Aware Tolerances , 2007, 11th International Database Engineering and Applications Symposium (IDEAS 2007).

[27]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[28]  Frank Dürr,et al.  Online trajectory data reduction using connection-preserving dead reckoning , 2008, MobiQuitous.

[29]  Evaggelia Pitoura,et al.  Locating Objects in Mobile Computing , 2001, IEEE Trans. Knowl. Data Eng..

[30]  Ling Liu,et al.  MobiEyes: A Distributed Location Monitoring Service Using Moving Location Queries , 2006, IEEE Transactions on Mobile Computing.

[31]  Ralf Steinmetz,et al.  Globase.KOM - A P2P Overlay for Fully Retrievable Location-based Search , 2007, Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007).

[32]  Pedro José Marrón,et al.  Mobility modeling of outdoor scenarios for MANETs , 2005, 38th Annual Simulation Symposium.

[33]  Kurt Rothermel,et al.  Architecture of a large-scale location service , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[34]  Kurt Rothermel,et al.  A Comparison of Protocols for Updating Location Information , 2001, Cluster Computing.