DNA Interlayers Enhance Charge Injection in Organic Field‐Effect Transistors

By inserting DNA interlayers beneath the Au contact, the contact resistance of PC(70) BM field-effect transistorss is reduced by approximately 30 times at a gate bias of 20 V. The electron and hole mobilities of ambipolar diketopyrrolopyrrole transistors are increased by one order of magnitude with a reduction of the threshold voltage from 12 to 6.5 V.

[1]  Yuan Zhang,et al.  Solution‐Processed Ambipolar Field‐Effect Transistor Based on Diketopyrrolopyrrole Functionalized with Benzothiadiazole , 2012 .

[2]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[3]  A. Heeger,et al.  Solution‐Processed Organic Light‐Emitting Transistors Incorporating Conjugated Polyelectrolytes , 2011 .

[4]  R. Naik,et al.  DNA electron injection interlayers for polymer light-emitting diodes. , 2011, Journal of the American Chemical Society.

[5]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[6]  Takao Someya,et al.  Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. , 2011, Small.

[7]  A. Jen,et al.  Surface Doping of Conjugated Polymers by Graphene Oxide and Its Application for Organic Electronic Devices , 2011, Advanced materials.

[8]  Shinuk Cho,et al.  Solution-processable fullerene derivatives for organic photovoltaics and n-type thin-film transistors , 2011 .

[9]  Thuc-Quyen Nguyen,et al.  Controlling ion motion in polymer light-emitting diodes containing conjugated polyelectrolyte electron injection layers. , 2011, Journal of the American Chemical Society.

[10]  Remote doping of a pentacene transistor: Control of charge transfer by molecular-level engineering , 2010 .

[11]  P. Blom,et al.  Enhancement of the hole injection into regioregular poly(3-hexylthiophene) by molecular doping , 2010 .

[12]  Lei Wang,et al.  High‐Performance Organic Field‐Effect Transistors from Organic Single‐Crystal Microribbons Formed by a Solution Process , 2010, Advanced materials.

[13]  James G. Grote,et al.  Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric , 2009 .

[14]  Andrés J. García,et al.  Improved injection in n-type organic transistors with conjugated polyelectrolytes. , 2009, Journal of the American Chemical Society.

[15]  D. D. de Leeuw,et al.  Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. , 2009, Journal of the American Chemical Society.

[16]  Yong-Young Noh,et al.  Controlling Electron and Hole Charge Injection in Ambipolar Organic Field‐Effect Transistors by Self‐Assembled Monolayers , 2009 .

[17]  Thuc‐Quyen Nguyen,et al.  Electronic Properties at Gold/Conjugated‐Polyelectrolyte Interfaces , 2009 .

[18]  P. Yang,et al.  Optoelectronics: Combining chemical worlds. , 2009, Nature materials.

[19]  A. Heeger,et al.  Electron injection into organic semiconductor devices from high work function cathodes , 2008, Proceedings of the National Academy of Sciences.

[20]  R. Naik,et al.  Multilayer white polymer light-emitting diodes with deoxyribonucleic acid-cetyltrimetylammonium complex as a hole-transporting/electron-blocking layer , 2008 .

[21]  John E. Anthony,et al.  Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. , 2008, Nature materials.

[22]  Qing Zhang,et al.  Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts. , 2008, Nano letters.

[23]  D. Ginger,et al.  Scanning Kelvin probe imaging of the potential profiles in fixed and dynamic planar LECs. , 2007, Journal of the American Chemical Society.

[24]  James G. Grote,et al.  Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric , 2007 .

[25]  S. Mannsfeld,et al.  Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. , 2007, Nano letters.

[26]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[27]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[28]  James G. Grote,et al.  Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer , 2006 .

[29]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[30]  Henning Sirringhaus,et al.  Device Physics of Solution‐Processed Organic Field‐Effect Transistors , 2005 .

[31]  J. Hummelen,et al.  Solution processible organic transistors and circuits based on a C-70 methanofullerene , 2005 .

[32]  Modification of work function of Ti by self-assembled monolayer molecules on SiO2∕p‐Si , 2005 .

[33]  Fei Huang,et al.  High-efficiency electron injection cathode of Au for polymer light-emitting devices , 2005 .

[34]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.

[35]  H. Tada,et al.  Preparation of organic light-emitting field-effect transistors with asymmetric electrodes , 2005 .

[36]  B. de Boer,et al.  Tuning of Metal Work Functions with Self‐Assembled Monolayers , 2005 .

[37]  Gilles Horowitz,et al.  Organic thin film transistors: From theory to real devices , 2004 .

[38]  C. Brabec,et al.  Solution‐Processed Organic n‐Type Thin‐Film Transistors , 2003 .

[39]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[40]  Antoine Kahn,et al.  Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study , 2001 .

[41]  Stephen R. Forrest,et al.  Interface-limited injection in amorphous organic semiconductors , 2001 .

[42]  M. W. Klein,et al.  Mobility-dependent charge injection into an organic semiconductor. , 2001, Physical review letters.

[43]  P. Liska,et al.  Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. , 2001, Journal of the American Chemical Society.

[44]  S. Uemura,et al.  An organic red-emitting diode with a water-soluble DNA–polyaniline complex containing Ru(bpy)32+ , 2001 .

[45]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[46]  R. Hsung,et al.  Tuning the Work Function of Gold with Self-Assembled Monolayers Derived from X−[C6H4−C⋮C−]nC6H4−SH (n = 0, 1, 2; X = H, F, CH3, CF3, and OCH3) , 1999 .

[47]  Antoine Kahn,et al.  Molecular level alignment at organic semiconductor-metal interfaces , 1998 .

[48]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .