Anderson's claim on fourth-order SPR synthesis is true

In this paper, we give a constructive proof of Anderson's claim: for the fourth-order stable interval polynomials, there always exists a fixed fourth-order polynomial such that their ratio is strict positive realness (SPR) invariant.

[1]  Brian D. O. Anderson,et al.  Robust strict positive realness: characterization and construction , 1990 .

[2]  Lin Huang,et al.  Designing Strictly Positive Real Transfer Function Families: A Necessary and Sufficient Condition for Low Degree and Structured Families , 1990 .

[3]  B. Anderson,et al.  On robust Hurwitz polynomials , 1987 .

[4]  Long Wang,et al.  On Hurwitz stable polynomials and strictly positive real transfer functions , 2001 .

[5]  Shankar P. Bhattacharyya,et al.  On robust stability of interval control systems , 1991 .

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  Wensheng Yu,et al.  Complete characterization of strictly positive real regions and robust strictly positive real synthesis method , 2000 .

[8]  Soura Dasgupta,et al.  Conditions for designing strictly positive real transfer functions for adaptive output error identification , 1987 .

[9]  R. Kálmán LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR'E IN AUTOMATIC CONTROL. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Ezra Zeheb,et al.  Design of robust strictly positive real transfer functions , 1993 .

[12]  Vijay V. Patel,et al.  Classification of units in H/sub /spl infin// and an alternative proof Kharitonov's theorem , 1997 .

[13]  Shankar P. Bhattacharyya,et al.  On robust nonlinear stability of interval control systems , 1991 .

[14]  B. Ross Barmish,et al.  New Tools for Robustness of Linear Systems , 1993 .

[15]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[16]  Panajotis Agathoklis,et al.  On the existence of robust strictly positive real rational functions , 1998 .

[17]  Lin Huang,et al.  A necessary and sufficient condition on robust SPR stabilizability for low degree systems , 1999 .