Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients
暂无分享,去创建一个
[1] Nail K. Yamaleev,et al. Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..
[2] Magnus Svärd,et al. Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..
[3] Jan Nordström,et al. High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..
[4] Chi-Wang Shu,et al. Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..
[5] H. Kreiss,et al. Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .
[6] D. Gottlieb,et al. A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .
[7] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[8] Philipp Öffner,et al. Spectral convergence for orthogonal polynomials on triangles , 2013, Numerische Mathematik.
[9] R. N. Mohapatra,et al. Markov and Bernstein type inequalities for polynomials. , 1999 .
[10] B. Leer,et al. Flux-vector splitting for the Euler equations , 1997 .
[11] Magnus Svärd,et al. Higher order finite difference schemes for the magnetic induction equations , 2009, 1102.0473.
[12] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[13] Freddie D. Witherden,et al. An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .
[14] D. Funaro. Polynomial Approximation of Differential Equations , 1992 .
[15] Bertil Gustafsson,et al. On Error Bounds of Finite Difference Approximations to Partial Differential Equations—Temporal Behavior and Rate of Convergence , 2000, J. Sci. Comput..
[16] H. Kreiss,et al. Time-Dependent Problems and Difference Methods , 1996 .
[17] Philipp Öffner,et al. L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.
[18] Michael Fey,et al. Multidimensional Upwinding. Part II. Decomposition of the Euler Equations into Advection Equations , 1998 .
[19] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[20] Hendrik Ranocha,et al. Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations , 2017, J. Sci. Comput..
[21] Robert Michael Kirby,et al. Filtering in Legendre spectral methods , 2008, Math. Comput..
[22] David C. Del Rey Fernández,et al. Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .
[23] Christine Bernardi,et al. Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .
[24] Magnus Svärd,et al. Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..
[25] Gary Cohen,et al. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..
[26] J. Nordström,et al. Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.
[27] Philipp Öffner. Zweidimensionale klassische und diskrete orthogonale Polynome und ihre Anwendung auf spektrale Methoden zur Lösung von hyperbolischen Erhaltungsgleichungen , 2015 .
[28] Antony Jameson,et al. A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..
[29] David I. Ketcheson,et al. Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..
[30] Gregor Gassner,et al. On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..
[31] Hendrik Ranocha,et al. Generalised summation-by-parts operators and variable coefficients , 2017, J. Comput. Phys..
[32] Philipp Öffner,et al. Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..
[33] Hendrik Ranocha,et al. Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.
[34] Esteban Ferrer,et al. Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods , 2017, Journal of Scientific Computing.
[35] Jan Nordström,et al. Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..
[36] P. Heinisch,et al. Numerical Methods for the Magnetic Induction Equation with Hall Effect and Projections onto Divergence-Free Vector Fields , 2018, 1810.01397.
[37] Gregor Gassner,et al. A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..
[38] Siddhartha Mishra,et al. On stability of numerical schemes via frozen coefficients and the magnetic induction equations , 2010 .
[39] Philipp Öffner,et al. Extended skew-symmetric form for summation-by-parts operators and varying Jacobians , 2017, J. Comput. Phys..
[40] P. Öffner. Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction , 2018 .
[41] Jan Nordström,et al. On conservation and stability properties for summation-by-parts schemes , 2017, J. Comput. Phys..
[42] Jan Nordström,et al. Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems , 2017, J. Sci. Comput..
[43] J. Steger,et al. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .
[44] Jan Nordstr. ERROR BOUNDED SCHEMES FOR TIME-DEPENDENT HYPERBOLIC PROBLEMS ∗ , 2007 .
[45] Yvon Maday,et al. Polynomial interpolation results in Sobolev spaces , 1992 .
[46] Philipp Offner,et al. Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction , 2018, 1806.01575.
[47] A. Bressan. Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .