Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients

For practical applications, the long time behaviour of the error of numerical solutions to time-dependent partial differential equations is very important. Here, we investigate this topic in the context of hyperbolic conservation laws and flux reconstruction schemes, focusing on the schemes in the discontinuous Galerkin spectral element framework. For linear problems with constant coefficients, it is well-known in the literature that the choice of the numerical flux (e.g. central or upwind) and the selection of the polynomial basis (e.g. Gauß–Legendre or Gauß–Lobatto–Legendre) affects both the growth rate and the asymptotic value of the error. Here, we extend these investigations of the long time error to variable coefficients using both Gauß–Lobatto–Legendre and Gauß–Legendre nodes as well as several numerical fluxes. We derive conditions guaranteeing that the errors are still bounded in time. Furthermore, we analyse the error behaviour under these conditions and demonstrate in several numerical tests similarities to the case of constant coefficients. However, if these conditions are violated, the error shows a completely different behaviour. Indeed, by applying central numerical fluxes, the error increases without upper bound while upwind numerical fluxes can still result in uniformly bounded numerical errors. An explanation for this phenomenon is given, confirming our analytical investigations.

[1]  Nail K. Yamaleev,et al.  Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..

[2]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[3]  Jan Nordström,et al.  High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..

[4]  Chi-Wang Shu,et al.  Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..

[5]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[6]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[7]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[8]  Philipp Öffner,et al.  Spectral convergence for orthogonal polynomials on triangles , 2013, Numerische Mathematik.

[9]  R. N. Mohapatra,et al.  Markov and Bernstein type inequalities for polynomials. , 1999 .

[10]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[11]  Magnus Svärd,et al.  Higher order finite difference schemes for the magnetic induction equations , 2009, 1102.0473.

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  Freddie D. Witherden,et al.  An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .

[14]  D. Funaro Polynomial Approximation of Differential Equations , 1992 .

[15]  Bertil Gustafsson,et al.  On Error Bounds of Finite Difference Approximations to Partial Differential Equations—Temporal Behavior and Rate of Convergence , 2000, J. Sci. Comput..

[16]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[17]  Philipp Öffner,et al.  L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} Stability of Explicit Runge–Kutta Schemes , 2017, Journal of Scientific Computing.

[18]  Michael Fey,et al.  Multidimensional Upwinding. Part II. Decomposition of the Euler Equations into Advection Equations , 1998 .

[19]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[20]  Hendrik Ranocha,et al.  Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations , 2017, J. Sci. Comput..

[21]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[22]  David C. Del Rey Fernández,et al.  Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations , 2014 .

[23]  Christine Bernardi,et al.  Properties of some weighted Sobolev spaces and application to spectral approximations , 1989 .

[24]  Magnus Svärd,et al.  Review of summation-by-parts schemes for initial-boundary-value problems , 2013, J. Comput. Phys..

[25]  Gary Cohen,et al.  A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time domain , 2006, J. Comput. Phys..

[26]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[27]  Philipp Öffner Zweidimensionale klassische und diskrete orthogonale Polynome und ihre Anwendung auf spektrale Methoden zur Lösung von hyperbolischen Erhaltungsgleichungen , 2015 .

[28]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[29]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[30]  Gregor Gassner,et al.  On the Quadrature and Weak Form Choices in Collocation Type Discontinuous Galerkin Spectral Element Methods , 2010, J. Sci. Comput..

[31]  Hendrik Ranocha,et al.  Generalised summation-by-parts operators and variable coefficients , 2017, J. Comput. Phys..

[32]  Philipp Öffner,et al.  Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..

[33]  Hendrik Ranocha,et al.  Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods , 2016, GEM - International Journal on Geomathematics.

[34]  Esteban Ferrer,et al.  Insights on Aliasing Driven Instabilities for Advection Equations with Application to Gauss–Lobatto Discontinuous Galerkin Methods , 2017, Journal of Scientific Computing.

[35]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[36]  P. Heinisch,et al.  Numerical Methods for the Magnetic Induction Equation with Hall Effect and Projections onto Divergence-Free Vector Fields , 2018, 1810.01397.

[37]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..

[38]  Siddhartha Mishra,et al.  On stability of numerical schemes via frozen coefficients and the magnetic induction equations , 2010 .

[39]  Philipp Öffner,et al.  Extended skew-symmetric form for summation-by-parts operators and varying Jacobians , 2017, J. Comput. Phys..

[40]  P. Öffner Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction , 2018 .

[41]  Jan Nordström,et al.  On conservation and stability properties for summation-by-parts schemes , 2017, J. Comput. Phys..

[42]  Jan Nordström,et al.  Error Boundedness of Discontinuous Galerkin Spectral Element Approximations of Hyperbolic Problems , 2017, J. Sci. Comput..

[43]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[44]  Jan Nordstr ERROR BOUNDED SCHEMES FOR TIME-DEPENDENT HYPERBOLIC PROBLEMS ∗ , 2007 .

[45]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[46]  Philipp Offner,et al.  Error boundedness of Correction Procedure via Reconstruction / Flux Reconstruction , 2018, 1806.01575.

[47]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .