An approach to parameters estimation of a chromatography model using a clustering genetic algorithm based inverse model

Genetic algorithms are tools for searching in complex spaces and they have been used successfully in the system identification solution that is an inverse problem. Chromatography models are represented by systems of partial differential equations with non-linear parameters which are, in general, difficult to estimate many times. In this work a genetic algorithm is used to solve the inverse problem of parameters estimation in a model of protein adsorption by batch chromatography process. Each population individual represents a supposed condition to the direct solution of the partial differential equation system, so the computation of the fitness can be time consuming if the population is large. To avoid this difficulty, the implemented genetic algorithm divides the population into clusters, whose representatives are evaluated, while the fitness of the remaining individuals is calculated in function of their distances from the representatives. Simulation and practical studies illustrate the computational time saving of the proposed genetic algorithm and show that it is an effective solution method for this type of application.

[1]  R. Fletcher Practical Methods of Optimization , 1988 .

[2]  Timo Mantere,et al.  Evolutionary software engineering, a review , 2005, Appl. Soft Comput..

[3]  Charles L. Karr,et al.  Solving inverse initial-value, boundary-value problems via genetic algorithm , 2000 .

[4]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[5]  Bernhard Sendhoff,et al.  Fitness Approximation In Evolutionary Computation - a Survey , 2002, GECCO.

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[7]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[8]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[9]  Tania Pencheva,et al.  Mathematical Modelling and Variable Structure Control Systems for Fed-Batch Fermentation of Escherichia coli , 2003 .

[10]  Anita M. Katti,et al.  Fundamentals of Preparative and Nonlinear Chromatography , 1994 .

[11]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[12]  Bernt Nilsson,et al.  Parameter estimation of protein chromatographic processes based on breakthrough curves , 2001 .

[13]  Francisco Herrera,et al.  A taxonomy for the crossover operator for real‐coded genetic algorithms: An experimental study , 2003, Int. J. Intell. Syst..

[14]  Xin Yao,et al.  A novel evolutionary data mining algorithm with applications to churn prediction , 2003, IEEE Trans. Evol. Comput..

[15]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[16]  Jochen Strube,et al.  Parameter estimation for the simulation of liquid chromatography , 1997 .

[17]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[18]  Oscar Castillo,et al.  The evolutionary learning rule for system identification , 2003, Appl. Soft Comput..

[19]  Yew-Soon Ong,et al.  Hierarchical surrogate-assisted evolutionary optimization framework , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[20]  Tongwen Xu,et al.  Modelling of the adsorption of bovine serum albumin on porous polyethylene membrane by back-propagation artificial neural network , 2005 .

[21]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[22]  H. A. Chase,et al.  Modeling the affinity adsorption of immunoglobulin G to protein A immobilised to agarose matrices , 1989 .

[23]  Olympia Roeva,et al.  A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation , 2004 .

[24]  Francisco Herrera,et al.  A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability , 2009, Soft Comput..

[25]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[26]  Khim Hoong Chu,et al.  Optimization of a fermentation medium using neural networks and genetic algorithms , 2003, Biotechnology Letters.

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[29]  Sung-Bae Cho,et al.  An efficient genetic algorithm with less fitness evaluation by clustering , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[30]  Eva Besada-Portas,et al.  MULTIOBJECTIVE OPTIMIZATION OF DYNAMIC PROCESSES BY EVOLUTIONARY METHODS , 2002 .

[31]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  Tingyue Gu,et al.  Mathematical Modeling and Scale-up of Liquid Chromatography , 1995 .

[34]  Lennart Ljung,et al.  Modeling Of Dynamic Systems , 1994 .

[35]  Rajkumar Roy,et al.  Evolutionary computing in manufacturing industry: an overview of recent applications , 2005, Appl. Soft Comput..

[36]  Francisco Herrera,et al.  Editorial Real coded genetic algorithms , 2005, Soft Comput..

[37]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[38]  Andy J. Keane,et al.  Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[39]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[40]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[41]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[42]  Robert H. Kewley,et al.  Computational military tactical planning system , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[43]  Antônio J. Silva Neto,et al.  An Inverse Mass Transfer Problem in Solid-Liquid Adsorption Systems , 2003 .

[44]  Plamen Angelov,et al.  A genetic-algorithm-based approach to optimization of bioprocesses described by fuzzy rules , 1997 .

[45]  A. Toffolo,et al.  Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation , 2002 .

[46]  Lennart Ljung,et al.  Model Validation and Model Error Modeling , 1999 .

[47]  Douglas S. Galvao,et al.  Designing conducting polymers using genetic algorithms , 2002 .