Meshless methods for two-dimensional oscillatory Fredholm integral equations

Abstract In this paper, a meshless solution procedure incorporating delaminating quadrature method for two-dimensional highly oscillatory Fredholm integral equation is put forward. The proposed method is an extension of our earlier findings of meshless methods for two-dimensional oscillatory Fredholm integral equation having kernel function free of stationary phase point(s) (Siraj-ul-Islam et al., 2015). The current method deals not only with the kernels having no stationary phase point(s) but also with the kernels having stationary phase point(s) in the context of highly oscillatory integral equations. The new method is numerically stable and computationally fast. Numerical experiments are presented to testify the robustness and efficiency of the proposed method.

[1]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[2]  Shuhuang Xiang,et al.  Efficient quadrature for highly oscillatory integrals involving critical points , 2007 .

[3]  Siraj-ul-Islam,et al.  Numerical integration of multi-dimensional highly oscillatory, gentle oscillatory and non-oscillatory integrands based on wavelets and radial basis functions , 2012 .

[4]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[5]  Siraj-ul-Islam,et al.  Meshless methods for one-dimensional oscillatory Fredholm integral equations , 2018, Appl. Math. Comput..

[6]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[7]  C. Geuzaine,et al.  On the O(1) solution of multiple-scattering problems , 2005, IEEE Transactions on Magnetics.

[8]  Gregor Kosec,et al.  Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations , 2012 .

[9]  Han Guo-qiang,et al.  Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations , 2001 .

[10]  Daan Huybrechs,et al.  A Sparse Discretization for Integral Equation Formulations of High Frequency Scattering Problems , 2007, SIAM J. Sci. Comput..

[11]  M. A. Bartoshevich A heat-conduction problem , 1975 .

[12]  R. Kress Linear Integral Equations , 1989 .

[13]  Fred J. Hickernell,et al.  Multivariate interpolation with increasingly flat radial basis functions of finite smoothness , 2012, Adv. Comput. Math..

[14]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[15]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[16]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[17]  Fernando Reitich,et al.  Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Giovanni P. Galdi,et al.  On the unsteady Poiseuille flow in a pipe , 2007 .

[19]  B. Šarler,et al.  Meshless Approach to Solving Freezing with Natural Convection , 2010 .

[20]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[21]  Siraj-ul-Islam,et al.  Meshless methods for multivariate highly oscillatory Fredholm integral equations , 2015 .

[22]  Quan Shen Local RBF-based differential quadrature collocation method for the boundary layer problems , 2010 .

[23]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Chun Shen,et al.  Delaminating quadrature method for multi-dimensional highly oscillatory integrals , 2009, Appl. Math. Comput..

[25]  Paola Baratella,et al.  A Nyström interpolant for some weakly singular linear Volterra integral equations , 2009, J. Comput. Appl. Math..

[26]  R. Kress Numerical Analysis , 1998 .

[27]  A. J. Jerri Introduction to Integral Equations With Applications , 1985 .

[28]  Tao Wang,et al.  A rapid solution of a kind of 1D Fredholm oscillatory integral equation , 2012, J. Comput. Appl. Math..

[29]  Fu-Rong Lin,et al.  A fast numerical solution method for two dimensional Fredholm integral equations of the second kind , 2009 .

[30]  F. Ursell,et al.  Integral Equations with a Rapidly Oscillating Kernel , 1969 .

[31]  Siraj-ul-Islam,et al.  New quadrature rules for highly oscillatory integrals with stationary points , 2015, J. Comput. Appl. Math..

[32]  Scott A. Sarra,et al.  A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains , 2012, Appl. Math. Comput..

[33]  Robert Vertnik,et al.  Meshfree explicit local radial basis function collocation method for diffusion problems , 2006, Comput. Math. Appl..