Nanoscale redistribution of alloying elements in high-burnup AXIOM-2 (X2®) and their effects on in-reactor corrosion

[1]  M. Thuvander,et al.  An atom probe tomography study of the chemistry of radiation-induced dislocation loops in Zircaloy-2 exposed to boiling water reactor operation , 2021, Journal of Nuclear Materials.

[2]  K. Linton,et al.  (S)TEM/EDS study of native precipitates and irradiation induced Nb-rich platelets in high-burnup M5® , 2021 .

[3]  M. Preuss,et al.  Characterisation of deuterium distributions in corroded zirconium alloys using high-resolution SIMS imaging , 2020 .

[4]  Lingfeng He,et al.  Effect of proton pre-irradiation on corrosion of Zr-0.5Nb model alloys with different Nb distributions , 2020 .

[5]  C. Jang,et al.  Short communication: “Effect of Nb on the electrical resistivity of ZrO2 layer formed on Zr alloys” , 2020 .

[6]  B. Wirth,et al.  The effect of local chemical environment on the energetics of stacking faults and vacancy platelets in α-zirconium , 2020 .

[7]  Jian Luo,et al.  A development mechanism of graded microstructures in iron-containing SiC fibers revealed by electron microscopy , 2020 .

[8]  F. Faghihi,et al.  Investigations of the fresh-core cycle-length and the average fuel depletion analysis of the NuScale core , 2020 .

[9]  N. Gayathri,et al.  Microstructural investigation of irradiation damage behavior of proton irradiated Zr-1 wt.% Nb fuel cladding alloy , 2020 .

[10]  N. Kumar,et al.  Biaxial Creep Behavior of Nb-Modified Zircaloys , 2019, Nuclear Technology.

[11]  A. Voigt,et al.  Deterministic 3D self-assembly of Si through a rim-less and topology-preserving dewetting regime , 2019 .

[12]  P. Voyles,et al.  Microstructure and microchemistry study of irradiation-induced precipitates in proton irradiated ZrNb alloys , 2019, Acta Materialia.

[13]  Z. Cai,et al.  Comprehensive investigation of the role of Nb on the oxidation kinetics of Zr-Nb alloys , 2019, Corrosion Science.

[14]  M. Preuss,et al.  Effect of Neutron and Ion Irradiation on the Metal Matrix and Oxide Corrosion Layer on Zr-1.0Nb Cladding Alloys , 2019, Acta Materialia.

[15]  M. Bachhav,et al.  Irradiation-induced Nb redistribution of ZrNb alloy: An APT study , 2019, Journal of Nuclear Materials.

[16]  P. Burr,et al.  First-principles calculations of solute transport in zirconium: Vacancy-mediated diffusion with metastable states and interstitial diffusion , 2019, Physical Review Materials.

[17]  M. Preuss,et al.  Effect of Nb and Fe on damage evolution in a Zr-alloy during proton and neutron irradiation , 2019, Acta Materialia.

[18]  Gorakh M. Pawar,et al.  Interpreting the Presence of an Additional Oxide Layer in Analysis of Metal Oxides–Metal Interfaces in Atom Probe Tomography , 2019, The Journal of Physical Chemistry C.

[19]  F. Onimus,et al.  Shape, orientation relationships and interface structure of beta-Nb nano-particles in neutron irradiated zirconium alloy , 2018, Journal of Nuclear Materials.

[20]  D. Butt,et al.  Detecting the Oxidation of Zircaloy Claddings by Infrared Interference , 2018 .

[21]  P. Voorhees,et al.  Nonequilibrium Solute Capture in Passivating Oxide Films. , 2018, Physical review letters.

[22]  A. Wilkinson,et al.  Understanding corrosion and hydrogen pickup of zirconium fuel cladding alloys: the role of oxide microstructure, porosity, suboxides, and second-phase particles , 2018 .

[23]  M. Wenman,et al.  The effect of Nb on the corrosion and hydrogen pick-up of Zr alloys , 2017 .

[24]  M. Preuss,et al.  The effect of matrix chemistry on dislocation evolution in an irradiated Zr alloy , 2017 .

[25]  B. Ensor THE NATURE OF UNSTABLE OXIDE GROWTH IN ZIRCONIUM AND ZIRCONIUM ALLOYS , 2016 .

[26]  A. Heuer,et al.  The Band Structure of Polycrystalline Al2O3 and Its Influence on Transport Phenomena , 2016 .

[27]  P. Bagot,et al.  Advances in atom probe tomography instrumentation: Implications for materials research , 2016, MRS Bulletin.

[28]  Arthur T. Motta,et al.  The coupled current charge compensation model for zirconium alloy fuel cladding oxidation: I. Parabolic oxidation of zirconium alloys , 2015 .

[29]  M. Preuss,et al.  The effect of Sn concentration on oxide texture and microstructure formation in zirconium alloys , 2015 .

[30]  Arthur T. Motta,et al.  Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding , 2015 .

[31]  G. Was Challenges to the use of ion irradiation for emulating reactor irradiation , 2015 .

[32]  M. Preuss,et al.  Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0%Nb alloy using (S)TEM, transmission-EBSD and EELS. , 2015, Micron.

[33]  L. Legras,et al.  Microstructural Evolution of M5 TM7 Alloy Irradiated in PWRs up to High Fluences???Comparison With Other Zr-Based Alloys , 2015 .

[34]  A. Motta,et al.  Atom probe tomography study of alloying element distributions in Zr alloys and their oxides , 2013 .

[35]  X. Feaugas,et al.  Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys , 2013 .

[36]  E. Marquis,et al.  Measuring Chemical Segregation at Grain Boundaries by Atom Probe Tomography , 2013, Microscopy and Microanalysis.

[37]  W. Petry,et al.  Heavy ion irradiation induced dislocation loops in AREVA’s M5® alloy , 2012 .

[38]  V. Shishov,et al.  Radiation Damage of E635 Alloy Under High Dose Irradiation in the VVER-1000 and BOR-60 Reactors , 2011 .

[39]  V. Shishov The Evolution of Microstructure and Deformation Stability in Zr–Nb–(Sn,Fe) Alloys Under Neutron Irradiation , 2010 .

[40]  R. J. Daroda,et al.  Characterization of density of biodiesel from soybean, sunflower, canola, and beef tallow in relation to temperature, using a digital density meter with a metrological point of view. , 2010 .

[41]  G. Smith,et al.  Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe , 2009 .

[42]  G. Smith,et al.  Zirconium oxidation on the atomic scale. , 2009, Ultramicroscopy.

[43]  K. Furuya,et al.  Thickness measurements with electron energy loss spectroscopy , 2008, Microscopy research and technique.

[44]  Gary S. Was,et al.  Fundamentals of Radiation Materials Science: Metals and Alloys , 2007 .

[45]  A. Motta,et al.  Zirconium Alloys in Nuclear Applications , 2006 .

[46]  I. Charit,et al.  Creep behavior of niobium-modified zirconium alloys , 2006 .

[47]  Yong Hwan Jeong,et al.  Influence of Nb concentration in the α-matrix on the corrosion behavior of Zr- xNb binary alloys , 2003 .

[48]  D. Seidman,et al.  Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy , 2002 .

[49]  R. Enrique,et al.  Compositional patterning in immiscible alloys driven by irradiation , 2001 .

[50]  Z. Q. Chen,et al.  Evidence of defect associates in yttrium-stabilized zirconia ☆ , 2000 .

[51]  Xin Guo,et al.  Effect of niobia on the defect structure of yttria-stabilized zirconia , 1998 .

[52]  A. Kozlov,et al.  Influence of Neutron Irradiation on Dislocation Structure and Phase Composition of Zr-Base Alloys , 1996 .

[53]  G. Smith,et al.  Atom probe analysis of interfacial segregation , 1995 .

[54]  S. Pyun,et al.  Effect of composition and heat treatment on the microstructure and corrosion behavior of ZrNb alloys , 1994 .

[55]  O. Woo,et al.  Precipitation in Zr-2.5Nb During 10 MeV Electron Irradiation , 1994 .

[56]  R. Egerton,et al.  EELS log-ratio technique for specimen-thickness measurement in the TEM. , 1988, Journal of electron microscopy technique.

[57]  M. Bamberger,et al.  Determination of Fe solubility in αZr by Mössbauer spectroscopy , 1985 .

[58]  Edward Hillner,et al.  Corrosion of zirconium-base alloys: an overview , 1977 .

[59]  A. Johnson,et al.  Effect of Aging and Irradiation on the Corrosion of Zr-2.5 Wt% Nb , 1975 .