Variational Theory for Optimization under Stochastic Ambiguity

Stochastic ambiguity provides a rich class of uncertainty models that includes those in stochastic, robust, risk-based, and semi-infinite optimization and that accounts for uncertainty about parameter values as well as incompleteness of the description of uncertainty. We provide a novel, unifying perspective on optimization under stochastic ambiguity that rests on two pillars. First, ambiguity is formulated in terms of the (cumulative) probability distribution associated with the random elements; more specifically, ambiguity is expressed by letting this distribution belong to a subfamily of distributions that might, or might not, depend on the decision variable. We derive a series of estimates by introducing a metric for the space of distribution functions based on the hypo-distance between upper semicontinuous functions. In the process, we show that this metric is consistent with convergence in distribution (= weak$^\star$ convergence) of the associated probability measures. Second, we rely on the theory...

[1]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[2]  David L. Woodruff,et al.  A class of stochastic programs withdecision dependent random elements , 1998, Ann. Oper. Res..

[3]  Huifu Xu,et al.  Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems , 2016, Math. Oper. Res..

[4]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[5]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[6]  R. Wets,et al.  On the hypo-convergence of probability measures , 1986 .

[7]  Alexander Shapiro,et al.  Distributionally Robust Stochastic Programming , 2017, SIAM J. Optim..

[8]  Sanjay Mehrotra,et al.  A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization , 2013, SIAM J. Optim..

[9]  R. Wets,et al.  Quantitative stability of variational systems. I. The epigraphical distance , 1991 .

[10]  J. Dupacová Stability and sensitivity-analysis for stochastic programming , 1991 .

[11]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[12]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[13]  R. Wets,et al.  STABILITY OF ε-APPROXIMATE SOLUTIONS TO CONVEX STOCHASTIC PROGRAMS∗ , 2007 .

[14]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[15]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[16]  Johannes O. Royset,et al.  Random variables, monotone relations, and convex analysis , 2014, Math. Program..

[17]  Johannes O. Royset,et al.  On buffered failure probability in design and optimization of structures , 2010, Reliab. Eng. Syst. Saf..

[18]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[19]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[20]  R. Steele Optimization , 2005 .

[21]  R. Wets,et al.  Multivariate Epi-splines and Evolving Function Identification Problems , 2016 .

[22]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[23]  P. Spreij Probability and Measure , 1996 .

[24]  René Henrion,et al.  Stability and Sensitivity of Optimization Problems with First Order Stochastic Dominance Constraints , 2007, SIAM J. Optim..

[25]  Johannes O. Royset,et al.  Optimality Functions and Lopsided Convergence , 2016, J. Optim. Theory Appl..

[26]  Armen Der Kiureghian,et al.  Adaptive Approximations and Exact Penalization for the Solution of Generalized Semi-infinite Min-Max Problems , 2003, SIAM J. Optim..

[27]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[28]  Roger J.-B. Wets,et al.  Variational convergence of bivariate functions: lopsided convergence , 2008, Math. Program..

[29]  Sergey Sarykalin,et al.  Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization , 2008 .

[30]  Roger J.-B. Wets,et al.  Variational Convergence of Bifunctions: Motivating Applications , 2014, SIAM J. Optim..

[31]  J. Dupacová Uncertainties in minimax stochastic programs , 2011 .

[32]  Marco A. López,et al.  Semi-infinite programming : recent advances , 2001 .

[33]  R. Rockafellar,et al.  The fundamental risk quadrangle in risk management, optimization and statistical estimation , 2013 .

[34]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[35]  Johannes O. Royset,et al.  Measures of Residual Risk with Connections to Regression, Risk Tracking, Surrogate Models, and Ambiguity , 2015, SIAM J. Optim..

[36]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[37]  Johannes O. Royset,et al.  On the Use of Augmented Lagrangians in the Solution of Generalized Semi-Infinite Min-Max Problems , 2005, Comput. Optim. Appl..

[38]  Alan J. King,et al.  Modeling with Stochastic Programming , 2012 .

[39]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[40]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[41]  George W. Bohrnstedt,et al.  OF RANDOM VARIABLES , 2016 .

[42]  Johannes O. Royset,et al.  Superquantile/CVaR risk measures: second-order theory , 2018, Ann. Oper. Res..

[43]  Jie Zhang,et al.  Quantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints , 2016, SIAM J. Optim..

[44]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[45]  G. Pflug,et al.  Modeling, Measuring and Managing Risk , 2008 .

[46]  Oliver Stein,et al.  Bi-Level Strategies in Semi-Infinite Programming , 2003 .

[47]  R. Wets,et al.  On the Convergence in Distribution of Measurable Multifunctions Random Sets Normal Integrands, Stochastic Processes and Stochastic Infima , 1986 .

[48]  Alexander Shapiro,et al.  On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..

[49]  Martin Connors,et al.  Optimization Models , 2014 .

[50]  Huifu Xu,et al.  Quantitative stability analysis for minimax distributionally robust risk optimization , 2018, Mathematical Programming.

[51]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[52]  Gerald Beer,et al.  Topologies on Closed and Closed Convex Sets , 1993 .

[53]  Gregory G. Gocek The 1/N Investment Strategy Is Optimal under High Model Ambiguity , 2012 .