Statistical prediction and molecular dynamics simulation.

We describe a statistical approach to the validation and improvement of molecular dynamics simulations of macromolecules. We emphasize the use of molecular dynamics simulations to calculate thermodynamic quantities that may be compared to experimental measurements, and the use of a common set of energetic parameters across multiple distinct molecules. We briefly review relevant results from the theory of stochastic processes and discuss the monitoring of convergence to equilibrium, the obtaining of confidence intervals for summary statistics corresponding to measured quantities, and an approach to validation and improvement of simulations based on out-of-sample prediction. We apply these methods to replica exchange molecular dynamics simulations of a set of eight helical peptides under the AMBER potential using implicit solvent. We evaluate the ability of these simulations to quantitatively reproduce experimental helicity measurements obtained by circular dichroism. In addition, we introduce notions of statistical predictive estimation for force-field parameter refinement. We perform a sensitivity analysis to identify key parameters of the potential, and introduce Bayesian updating of these parameters. We demonstrate the effect of parameter updating applied to the internal dielectric constant parameter on the out-of-sample prediction accuracy as measured by cross-validation.

[1]  R. L. Baldwin,et al.  Effect of the substitution Ala----Gly at each of five residue positions in the C-peptide helix. , 1989, Biochemistry.

[2]  Wilfred F. van Gunsteren,et al.  Validation of molecular dynamics simulation , 1998 .

[3]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[4]  B. Forood,et al.  Stabilization of alpha-helical structures in short peptides via end capping. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[6]  Paul Tavan,et al.  Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Kollman,et al.  Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. , 1998, Science.

[8]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[9]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[10]  Ulrich H E Hansmann,et al.  Solvation model dependency of helix-coil transition in polyalanine. , 2002, Biophysical journal.

[11]  S. Lowen The Biophysical Journal , 1960, Nature.

[12]  S. Schmidler,et al.  Preserving the Boltzmann ensemble in replica-exchange molecular dynamics. , 2008, The Journal of chemical physics.

[13]  Robert L. Baldwin,et al.  THE MECHANISM OF a-HELIX FORMATION BY PEPTIDES , 2002 .

[14]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[15]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[16]  Michael R. Shirts,et al.  Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. , 2003, Biopolymers.

[17]  Lorna J. Smith,et al.  Assessing equilibration and convergence in biomolecular simulations , 2002, Proteins.

[18]  P S Kim,et al.  Folding of a peptide corresponding to the alpha-helix in bovine pancreatic trypsin inhibitor. , 1989, Biochemistry.

[19]  Charles L. Brooks,et al.  Simulations of peptide conformational dynamics and thermodynamics , 1993 .

[20]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[21]  H. Nymeyer,et al.  Simulation of the folding equilibrium of α-helical peptides: A comparison of the generalized Born approximation with explicit solvent , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[23]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[24]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[25]  D. Case,et al.  Theory and applications of the generalized born solvation model in macromolecular simulations , 2000, Biopolymers.

[26]  X. Daura,et al.  The beta-peptide hairpin in solution: conformational study of a beta-hexapeptide in methanol by NMR spectroscopy and MD simulation. , 2001, Journal of the American Chemical Society.

[27]  Ulrich H. E. Hansmann,et al.  COMPUTER SIMULATION OF BIOLOGICAL MACROMOLECULES IN GENERALIZED ENSEMBLES , 1999 .

[28]  S Gnanakaran,et al.  Peptide folding simulations. , 2003, Current opinion in structural biology.

[29]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[30]  W Shalongo,et al.  Dichroic statistical model for prediction and analysis of peptide helicity , 1997, Proteins.

[31]  R. L. Baldwin,et al.  The mechanism of alpha-helix formation by peptides. , 1992, Annual review of biophysics and biomolecular structure.

[32]  D. Woodard,et al.  Conditions for Torpid Mixing of Parallel and Simulated Tempering on Multimodal Distributions , 2022 .

[33]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[34]  Joseph E. Lucas,et al.  Statistical Estimation of Statistical Mechanical Models: Helix-Coil Theory and Peptide Helicity Prediction , 2007, J. Comput. Biol..

[35]  Steve P. Brooks,et al.  Output Assessment for Monte Carlo Simulations via the Score Statistic , 2006 .

[36]  Eric J. Sorin,et al.  Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. , 2005, Biophysical journal.

[37]  X. Daura,et al.  Reversible peptide folding in solution by molecular dynamics simulation. , 1998, Journal of molecular biology.

[38]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[39]  I. Kuntz,et al.  A molecular dynamics simulation of polyalanine: An analysis of equilibrium motions and helix–coil transitions , 1991, Biopolymers.

[40]  Vijay S. Pande,et al.  Empirical force‐field assessment: The interplay between backbone torsions and noncovalent term scaling , 2005, J. Comput. Chem..

[41]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[42]  Wilfred F van Gunsteren,et al.  A comparison of methods for calculating NMR cross-relaxation rates (NOESY and ROESY intensities) in small peptides , 2002, Journal of biomolecular NMR.

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  Y. Okamoto,et al.  Finite-size scaling of helix–coil transitions in poly-alanine studied by multicanonical simulations , 1998 .

[45]  B. Forood,et al.  Stabilization of a-helical structures in short peptides via end capping (peptide synthesis/protein folding/circular dichroism) , 2022 .

[46]  Luis Serrano,et al.  Elucidating the folding problem of helical peptides using empirical parameters , 1994, Nature Structural Biology.

[47]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[48]  D. Raleigh,et al.  Conformational analysis of peptide fragments derived from the peripheral subunit-binding domain from the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: evidence for nonrandom structure in the unfolded state. , 1999, Biopolymers.

[49]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[50]  R. Unger,et al.  Chaos in protein dynamics , 1997, Proteins.

[51]  K. Kuczera,et al.  Equilibrium structure and folding of a helix-forming peptide: circular dichroism measurements and replica-exchange molecular dynamics simulations. , 2004, Biophysical journal.

[52]  K. Sanbonmatsu,et al.  α-Helical stabilization by side chain shielding of backbone hydrogen bonds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[54]  T. Schlick Molecular modeling and simulation , 2002 .

[55]  V. Pande,et al.  Absolute comparison of simulated and experimental protein-folding dynamics , 2002, Nature.