An inductorless wideband common-gate LNA with dual capacitor cross-coupled feedback and negative impedance techniques

A wideband common-gate (CG) low-noise amplifier (LNA) with dual capacitor cross-coupled (CCC) feedback and negative impedance techniques is presented for multimode multiband wireless communication applications. Double CCC technique boosts the input transconductance of the LNA, and low power consumption is obtained by using current-reuse technique. Negative impedance technique is employed to alleviate the correlation between the transconductance of the matching transistors and input impedance. Meanwhile, it also allows us to achieve a lower noise figure (NF). Moreover, current bleeding technique is adopted to allow the choice of a larger load resistor without sacrificing the voltage headroom. The proposed architecture achieves low noise, low power and high gain simultaneously without the use of bulky inductors. Simulation results of a 0.18-µm CMOS implementation show that the proposed LNA provides a maximum voltage gain of 25.02dB and a minimum NF of 2.37dB from 0.1 to 2.25GHz. The input-referred third-order intercept point (IIP3) and input 1-dB compression point (IP1dB) are better than -7.8dBm and -19.2dBm, respectively, across the operating bandwidth. The circuit dissipates 3.24mW from 1.8V DC supply with an active area of 0.03mm2. We present a wideband common-gate CMOS low-noise amplifier (LNA) for multi-mode multi-band wireless communication applications.Double capacitor cross-coupled feedback and current-reuse/current bleeding techniques enable a low power and high gain designNegative impedance technique is employed to alleviate the correlation between the transconductance of the matching transistors and input impedance, and a lower NFmin can be achieved without the use of bulky inductors.

[1]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[2]  Sang-Gug Lee,et al.  0.7-2.7 GHz wideband CMOS low-noise amplifier for LTE application , 2013 .

[3]  S. Andersson,et al.  Wideband LNA for a multistandard wireless receiver in 0.18 /spl mu/m CMOS , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[4]  Jafar Sobhi,et al.  An Inductor-less Sub-mW Low Noise Amplifier for Wireless Sensor Network Applications , 2016, Integr..

[5]  Todd Walter,et al.  Future Dual-Frequency GPS Navigation System for Intelligent Air Transportation Under Strong Ionospheric Scintillation , 2014, IEEE Transactions on Intelligent Transportation Systems.

[6]  Payam Heydari,et al.  A performance optimized CMOS distributed LNA for UWB receivers , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[7]  Hossein Shamsi,et al.  Exploiting cross-coupled and body-driven techniques for noise cancellation of an inductor-less wideband LNA , 2015 .

[8]  S.S. Taylor,et al.  A 5GHz resistive-feedback CMOS LNA for low-cost multi-standard applications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[9]  Jiann-Jong Chen,et al.  An inductorless wideband noise-cancelling CMOS low noise amplifier with variable-gain technique for DTV tuner application , 2010 .

[10]  Xiaolei Li,et al.  A 1.6–9.7 GHz CMOS LNA Linearized by Post Distortion Technique , 2013, IEEE Microwave and Wireless Components Letters.

[11]  A.A. Abidi,et al.  The Path to the Software-Defined Radio Receiver , 2007, IEEE Journal of Solid-State Circuits.

[12]  Rashad Ramzan,et al.  Wideband and multiband CMOS LNAs: State-of-the-art and future prospects , 2013, Microelectron. J..

[13]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[14]  Ahmed Amer,et al.  A Low-Power Wideband CMOS LNA for WiMAX , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Franziska Hoffmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[16]  Hao Min,et al.  A CMOS wide-band low-noise amplifier with balun-based noise-canceling technique , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[17]  Jun Chen,et al.  A wideband complementary noise cancelling CMOS LNA , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[18]  Fernando M. L. Tavares,et al.  GSM Evolution Importance in Re-Farming 900 MHz Band , 2010, 2010 IEEE 72nd Vehicular Technology Conference - Fall.

[19]  Joy Laskar,et al.  A 3.6mW differential common-gate CMOS LNA with positive-negative feedback , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[20]  D.J. Allstot,et al.  Design considerations for CMOS low-noise amplifiers , 2004, 2004 IEE Radio Frequency Integrated Circuits (RFIC) Systems. Digest of Papers.

[21]  B. Nauta,et al.  Wide-band CMOS low-noise amplifier exploiting thermal noise canceling , 2004, IEEE Journal of Solid-State Circuits.

[22]  Uwe Ladebusch,et al.  Terrestrial DVB (DVB-T): A Broadcast Technology for Stationary Portable and Mobile Use , 2006, Proceedings of the IEEE.

[23]  Faisal A. Hussien,et al.  A sub-2dB noise figure, 200–3700 MHz receiver for LTE-A applications , 2014, MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference.

[24]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[25]  Zengqi Wang,et al.  1.8 mW wideband LNA with double capacitor-cross-coupled feedback , 2014 .

[26]  Thomas H. Lee The Design of CMOS Radio-Frequency Integrated Circuits , 1998 .

[27]  Edgar Sánchez-Sinencio,et al.  An Inductor-Less Noise-Cancelling Broadband Low Noise Amplifier With Composite Transistor Pair in 90 nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[28]  Luís Bica Oliveira,et al.  Noise canceling LNA with gain enhancement by using double feedback , 2016, Integr..

[29]  M.J. Deen,et al.  MOSFET modeling for RF IC design , 2005, IEEE Transactions on Electron Devices.

[30]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[31]  François Belmas,et al.  A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS , 2012, RFIC 2012.

[32]  F. Svelto,et al.  Toward multistandard mobile terminals - fully integrated receivers requirements and architectures , 2005, IEEE Transactions on Microwave Theory and Techniques.

[33]  Reinhold Ludwig,et al.  RF circuit design : theory and applications , 2000 .

[34]  G. H. Zare Fatin,et al.  A technique for improving gain and noise figure of common-gate wideband LNAs , 2010 .

[35]  Jorge R. Fernandes,et al.  Efficient biasing circuit strategies for inductorless wideband low noise amplifiers with feedback , 2012, Microelectron. J..

[36]  Antonio Liscidini,et al.  A 0.13 /spl mu/m CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier , 2006, IEEE Journal of Solid-State Circuits.

[37]  Jean-Michel Fournier,et al.  A Low Power Inductorless LNA With Double ${\rm G} _{\rm m}$ Enhancement in 130 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.