Computational hydrographic printing

Hydrographic printing is a well-known technique in industry for transferring color inks on a thin film to the surface of a manufactured 3D object. It enables high-quality coloring of object surfaces and works with a wide range of materials, but suffers from the inability to accurately register color texture to complex surface geometries. Thus, it is hardly usable by ordinary users with customized shapes and textures. We present computational hydrographic printing, a new method that inherits the versatility of traditional hydrographic printing, while also enabling precise alignment of surface textures to possibly complex 3D surfaces. In particular, we propose the first computational model for simulating hydrographic printing process. This simulation enables us to compute a color image to feed into our hydrographic system for precise texture registration. We then build a physical hydrographic system upon off-the-shelf hardware, integrating virtual simulation, object calibration and controlled immersion. To overcome the difficulty of handling complex surfaces, we further extend our method to enable multiple immersions, each with a different object orientation, so the combined colors of individual immersions form a desired texture on the object surface. We validate the accuracy of our computational model through physical experiments, and demonstrate the efficacy and robustness of our system using a variety of objects with complex surface textures.

[1]  David S Jones,et al.  The effect of dilute solution properties on poly(vinyl alcohol) films. , 2013, Journal of the mechanical behavior of biomedical materials.

[2]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[3]  Wilmot Li,et al.  Designing and fabricating mechanical automata from mocap sequences , 2013, ACM Trans. Graph..

[4]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[5]  Radomír Mech,et al.  Stress relief , 2012, ACM Trans. Graph..

[6]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[7]  Wojciech Matusik,et al.  Printing spatially-varying reflectance , 2009, SIGGRAPH 2009.

[8]  Tim Weyrich,et al.  Fabricating microgeometry for custom surface reflectance , 2009, SIGGRAPH 2009.

[9]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[10]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[11]  Eitan Grinspun,et al.  A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .

[12]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[13]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[14]  Wojciech Matusik,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[15]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[16]  Leonie Moench,et al.  Low Speed Aerodynamics , 2016 .

[17]  Paul J. Besl,et al.  Method for registration of 3-D shapes , 1992, Other Conferences.

[18]  John William Strutt Rayleigh,et al.  The theory of sound. Vol. 2 , 2015 .

[19]  Neil M. Ribe,et al.  A general theory for the dynamics of thin viscous sheets , 2002, Journal of Fluid Mechanics.

[20]  H. Shum,et al.  TextureMontage: Seamless Texturing of Arbitrary Surfaces From Multiple Images , 2005, SIGGRAPH 2005.

[21]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[22]  Baining Guo,et al.  Fabricating spatially-varying subsurface scattering , 2010, ACM Trans. Graph..

[23]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[24]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[25]  Yue Dong,et al.  Bi-scale appearance fabrication , 2013, ACM Trans. Graph..

[26]  Kun Zhou,et al.  An asymptotic numerical method for inverse elastic shape design , 2014, ACM Trans. Graph..

[27]  Andrew W. Fitzgibbon,et al.  KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera , 2011, UIST.

[28]  M. Otaduy,et al.  Capture and modeling of non-linear heterogeneous soft tissue , 2009, ACM Trans. Graph..

[29]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[30]  Alla Sheffer,et al.  Matchmaker: constructing constrained texture maps , 2003, ACM Trans. Graph..

[31]  F. Pellacini,et al.  Fabricating spatially-varying subsurface scattering , 2010, SIGGRAPH 2010.

[32]  Wojciech Matusik,et al.  Computational design of mechanical characters , 2013, ACM Trans. Graph..

[33]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[34]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[35]  T. Papanastasiou,et al.  Viscous Fluid Flow , 1999 .

[36]  Ramin Samadani,et al.  Printing reflectance functions , 2012, TOGS.

[37]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[38]  L. Rayleigh,et al.  The theory of sound , 1894 .

[39]  Jan Kautz,et al.  3D-printing of non-assembly, articulated models , 2012, ACM Trans. Graph..

[40]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Mordechay Schlesinger,et al.  Modern Electroplating: Schlesinger/Modern Electroplating 5E , 2010 .

[42]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[43]  Jessica K. Hodgins,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[44]  Wojciech Matusik,et al.  Design and fabrication of materials with desired deformation behavior , 2010, SIGGRAPH 2010.

[45]  Randy Deutsch Design and Fabrication , 2017 .

[46]  M. Otaduy,et al.  Design and fabrication of materials with desired deformation behavior , 2010, ACM Trans. Graph..

[47]  Tim Weyrich,et al.  Fabricating microgeometry for custom surface reflectance , 2009, ACM Trans. Graph..

[48]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[49]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.