Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior

The Moon is generally thought to have formed and evolved through a single or a series of catastrophic heating events, during which most of the highly volatile elements were lost. Hydrogen, being the lightest element, is believed to have been completely lost during this period. Here we make use of considerable advances in secondary ion mass spectrometry to obtain improved limits on the indigenous volatile (CO2, H2O, F, S and Cl) contents of the most primitive basalts in the Moon—the lunar volcanic glasses. Although the pre-eruptive water content of the lunar volcanic glasses cannot be precisely constrained, numerical modelling of diffusive degassing of the very-low-Ti glasses provides a best estimate of 745 p.p.m. water, with a minimum of 260 p.p.m. at the 95 per cent confidence level. Our results indicate that, contrary to prevailing ideas, the bulk Moon might not be entirely depleted in highly volatile elements, including water. Thus, the presence of water must be considered in models constraining the Moon’s formation and its thermal and chemical evolution.

[1]  G. Moore,et al.  Volatile-Rich Lunar Soil: Evidence of Possible Cometary Impact , 1973, Science.

[2]  Harold F. Levison,et al.  Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment , 2007 .

[3]  J. Delano Buoyancy-driven melt segregation in the earth's moon. I - Numerical results , 1989 .

[4]  K. Heinrich,et al.  Electron Probe Quantitation , 1991, Springer US.

[5]  P. Butler,et al.  The source of sublimates on the Apollo 15 green and Apollo 17 orange glass samples. , 1975 .

[6]  C. Meyer,et al.  Sulfur prevails in coatings on glass droplets - Apollo 15 green and brown glasses and Apollo 17 orange and black /devitrified/ glasses , 1976 .

[7]  D. Dingwell,et al.  Chemical diffusion of fluorine in jadeite melt at high pressure , 1984 .

[8]  B. Marty,et al.  Solar wind record on the moon: deciphering presolar from planetary nitrogen. , 2000, Science.

[9]  M. Hirschmann,et al.  Hydrogen concentration analyses using SIMS and FTIR: Comparison and calibration for nominally anhydrous minerals , 2003 .

[10]  R. Spangler,et al.  39AR‐40Ar ages for the Apollo 15 green and yellow volcanic glasses , 1984 .

[11]  M. Rutherford,et al.  Sulfur diffusion in rhyolite melts , 1996 .

[12]  J. Kramers,et al.  The antiquity indicator argon‐40/argon‐36 for lunar surface samples calibrated by uranium‐235‐xenon‐136 dating , 2001 .

[13]  James W. Head,et al.  Lunar volcanism in space and time. , 1976 .

[14]  C. Weitz,et al.  Dark ring in southwestern Orientale Basin: Origin as a single pyroclastic eruption , 2002 .

[15]  C. Neal Interior of the Moon: The presence of garnet in the primitive deep lunar mantle , 2001 .

[16]  Paul H. Warren,et al.  THE MAGMA OCEAN CONCEPT AND LUNAR EVOLUTION , 1985 .

[17]  Russell J. Molyneux,et al.  Introduction and Overview , 2007, Computational Analysis of Storylines.

[18]  R. Spangler,et al.  History of the Apollo 15 yellow impact glass and sample 15426 and 15427 , 1984 .

[19]  Graham Ryder,et al.  Mass flux in the ancient Earth‐Moon system and benign implications for the origin of life on Earth , 2002 .

[20]  E. Gibson,et al.  Sulfur abundances and distributions in mare basalts and their source magmas , 1975 .

[21]  C. H. Langmuir,et al.  The importance of water to oceanic mantle melting regimes , 2003, Nature.

[22]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[23]  S. Hart,et al.  Applications of the Ion Microprobe to Geochemistry and Cosmochemistry , 1982 .

[24]  J. Papike,et al.  Basaltic magmatism on the Moon: A perspective from volcanic picritic glass beads , 1993 .

[25]  R. Wendlandt Oxygen diffusion in basalt and andesite melts: experimental results and discussion of chemical versus tracer diffusion , 1991 .

[26]  J. Geiss,et al.  The cosmic-ray exposure history of Shorty Crater samples; the age of Shorty Crater. , 1977 .

[27]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[28]  Linda T. Elkins-Tanton,et al.  Magmatic processes that produced lunar fire fountains , 2003 .

[29]  A. E. Ringwood,et al.  A dynamic model for mare basalt petrogenesis , 1976 .

[30]  W. Boynton,et al.  Volatiles on the surface of Apollo 15 green glass and trace-element distributions among Apollo 15 soils , 1975 .

[31]  P. C. Hess,et al.  A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism , 1995 .

[32]  Torsten Kröger Experimental Results and Applications , 2010 .

[33]  S. A. Wildeb,et al.  Magmatic y 18 O in 4400 – 3900 Ma detrital zircons : A record of the alteration and recycling of crust in the Early Archean , 2005 .

[34]  W. Engelhardt,et al.  Formation of Apollo 17 orange and black glass beads , 1987 .

[35]  J. Huneke,et al.  Argon in Apollo 15 green glass spherules (15426):40Ar39Ar age and trapped argon , 1973 .

[36]  B. Mason Composition of the Earth , 1966, Nature.

[37]  R. Fogel,et al.  Magmatic volatiles in primitive lunar glasses: I. FTIR and EPMA analyses of Apollo 15 green and yellow glasses and revision of the volatile-assisted fire-fountain theory , 1995 .

[38]  T. Grove,et al.  Origin of lunar ultramafic green glasses: constraints from phase equilibrium studies , 2000 .

[39]  G. Gaetani,et al.  Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions , 2006 .

[40]  B. Jolliff,et al.  New views of the Moon , 2006 .

[41]  W. Boynton,et al.  Volatile compounds released during lunar lava fountaining , 1976 .

[42]  K. N. Dollman,et al.  - 1 , 1743 .

[43]  W. Engelhardt,et al.  Formation of Apollo 15 green glass beads , 1984 .

[44]  F. Robert,et al.  Lithium nucleosynthesis in the Sun inferred from the solar-wind 7Li/6Li ratio , 1999, Nature.

[45]  Kenneth J. T. Livi,et al.  Lunar volcanic glasses and their constraints on mare petrogenesis , 1981 .

[46]  J. Longhi Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation , 2006 .

[47]  D. Lindsley,et al.  Mare glasses from Apollo 17: Constraints on the Moon's bulk composition , 1983 .

[48]  D. Mckay,et al.  Sublimate morphology on 74001 and 74002 orange and black glassy droplets , 1978 .

[49]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[50]  Youxue Zhang,et al.  Water diffusion in a basaltic melt , 1991, Nature.

[51]  Matthew E. Pritchard,et al.  The Constitution and Structure of the Lunar Interior , 2006 .

[52]  Equilibration in the aftermath of the lunar-forming giant impact , 2007, 1012.5323.

[53]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[54]  B. Marty,et al.  Protosolar Carbon Isotopic Composition: Implications for the Origin of Meteoritic Organics , 2004 .

[55]  M. Sato The driving mechanism of lunar pyroclastic eruptions inferred from the oxygen fugacity behavior of Apollo 17 orange glass , 1979 .

[56]  H. Shinagawa,et al.  Terrestrial nitrogen and noble gases in lunar soils , 2005, Nature.

[57]  S. Newman,et al.  SIMS analysis of volatiles in silicate glasses , 2002 .

[58]  M. Zuber,et al.  Recent Refinements in Geophysical Constraints on Lunar Origin and Evolution , 2000 .

[59]  S. Wilde,et al.  Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean , 2005 .

[60]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[61]  E. Bruce Watson,et al.  Diffusion of dissolved carbonate in magmas: Experimental results and applications , 1982 .

[62]  P. Butler Recognition of lunar glass droplets produced directly from endogenous liquids - The evidence from S-ZN coatings , 1978 .

[63]  J. Delano,et al.  Abundance and Diffusivity of Sulfur in Lunar Picritic Magmas , 1994 .

[64]  R. Canup Dynamics of Lunar Formation , 2004 .

[65]  E. Gibson Volatile elements, carbon, nitrogen, sulfur, sodium, potassium and rubidium in the lunar regolith , 1977 .

[66]  F. Spera Lunar magma transport phenomena , 1992 .

[67]  H. R. Hart,et al.  Particle track record of Apollo 15 green soil and rock , 1973 .

[68]  David J. Heather,et al.  New views of the Moon , 1999 .

[69]  D. Heymann,et al.  Green spherules from Apollo 15: Inferences about their origin from inert gas measurements , 1973 .

[70]  C. Weitz,et al.  Ascent and eruption of a lunar high‐titanium magma as inferred from the petrology of the 74001/2 drill core , 1999 .

[71]  G. Gaetani,et al.  The influence of water on melting of mantle peridotite , 1998 .

[72]  J. Delano Pristine lunar glasses: Criteria, data, and implications , 1986 .

[73]  N. Chatterjee,et al.  Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses , 2003 .

[74]  J. Head,et al.  Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions , 2003 .

[75]  J.-L. Pouchou,et al.  Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP” , 1991 .

[76]  M. Hirschmann,et al.  Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts , 2004 .

[77]  David S. McKay,et al.  Lunar deposits of possible pyroclastic origin , 1974 .

[78]  S. Epstein,et al.  The isotopic composition and concentration of water, hydrogen, and carbon in some Apollo 15 and 16 soils and in the Apollo 17 orange soil , 1973 .

[79]  D. Uhlmann,et al.  Cooling rates for glass containing lunar compositions , 1983 .

[80]  Greg Hirth,et al.  Water in the oceanic upper mantle: implications for rheology , 1996 .