Splitting methods for the time-dependent Schrödinger equation

Abstract Cheap and easy to implement fourth-order methods for the Schrodinger equation with time-dependent Hamiltonians are introduced. The methods require evaluations of exponentials of simple unidimensional integrals, and can be considered an averaging technique, preserving many of the qualitative properties of the exact solution.

[1]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  B. A. Shadwick,et al.  UNITARY INTEGRATION : A NUMERICAL TECHNIQUE PRESERVING THE STRUCTURE OF THE QUANTUM LIOUVILLE EQUATION , 1997 .

[3]  Stephen K. Gray,et al.  Optimal stability polynomials for splitting methods, with application to the time-dependent Schro¨dinger equation , 1997 .

[4]  Generalized propagation techniques for longitudinally varying refractive index distributions , 1992 .

[5]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[6]  J. Oteo,et al.  On the existence of the exponential solution of linear differential systems , 1999 .

[7]  J. M. Sanz-Serna,et al.  Classical numerical integrators for wave‐packet dynamics , 1996 .

[8]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[9]  D. Micha,et al.  The linearly driven parametric oscillator: Application to collisional energy transfer , 1985 .

[10]  R. K. Preston,et al.  Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator , 1977 .

[11]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[12]  D. Manolopoulos,et al.  Symplectic integrators tailored to the time‐dependent Schrödinger equation , 1996 .

[13]  R. Russell,et al.  Unitary integrators and applications to continuous orthonormalization techniques , 1994 .

[14]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[15]  Marlis Hochbruck,et al.  Exponential Integrators for Quantum-Classical Molecular Dynamics , 1999 .