TOI-150: A Transiting Hot Jupiter in the TESS Southern CVZ

We report the detection of a hot Jupiter ($M_{p}=1.75_{-0.17}^{+0.14}\ M_{J}$, $R_{p}=1.38\pm0.04\ R_{J}$) orbiting a middle-aged star ($\log g=4.152^{+0.030}_{-0.043}$) in the Transiting Exoplanet Survey Satellite (TESS) southern continuous viewing zone ($\beta=-79.59^{\circ}$). We confirm the planetary nature of the candidate TOI-150.01 using radial velocity observations from the APOGEE-2 South spectrograph and the Carnegie Planet Finder Spectrograph, ground-based photometric observations from the robotic Three-hundred MilliMeter Telescope at Las Campanas Observatory, and Gaia distance estimates. Large-scale spectroscopic surveys, such as APOGEE/APOGEE-2, now have sufficient radial velocity precision to directly confirm the signature of giant exoplanets, making such data sets valuable tools in the TESS era. Continual monitoring of TOI-150 by TESS can reveal additional planets and subsequent observations can provide insights into planetary system architectures involving a hot Jupiter around a star about halfway through its main-sequence life.

[1]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[2]  B. Scott Gaudi,et al.  Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect , 2006, astro-ph/0608071.

[3]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[5]  C. Prieto,et al.  APOGEE Data Releases 13 and 14: Data and Analysis , 2018, The Astronomical Journal.

[6]  K. Stassun,et al.  Light Curves for All Stars Observed in TESS Full-frame Images: Sector 1 and Beyond , 2019, Research Notes of the AAS.

[7]  Wendy L. Freedman,et al.  Standard Galactic Field RR Lyrae. I. Optical to Mid-infrared Phased Photometry , 2017, 1703.01520.

[8]  M. Carr,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs , 2019, Publications of the Astronomical Society of the Pacific.

[9]  T. Böker,et al.  Observing transiting exoplanets with JWST/NIRSpec , 2014, Astronomical Telescopes and Instrumentation.

[10]  K. Stassun,et al.  Precision Light Curves from TESS Full-frame Images: A Different Imaging Approach , 2018, The Astronomical Journal.

[11]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[12]  D. Schneider,et al.  Kepler-730: A Hot Jupiter System with a Close-in, Transiting, Earth-sized Planet , 2018, The Astrophysical Journal.

[13]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007 .

[14]  J. Brinkmann,et al.  Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances , 2017, 1712.01198.

[15]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[16]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[17]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[18]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[19]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[20]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[21]  John Asher Johnson,et al.  Origins of Hot Jupiters , 2018, Annual Review of Astronomy and Astrophysics.

[22]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[23]  H. Rix,et al.  Signatures of unresolved binaries in stellar spectra: implications for spectral fitting , 2017, 1709.03983.

[24]  D. A. García-Hernández,et al.  Target Selection for the SDSS-IV APOGEE-2 Survey , 2017, 1708.00155.

[25]  H. Rix,et al.  Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra , 2017, 1711.08793.

[26]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[27]  D. A. García-Hernández,et al.  COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS , 2016, 1601.00688.

[28]  D. Schneider,et al.  THE APOGEE SPECTROSCOPIC SURVEY OF KEPLER PLANET HOSTS: FEASIBILITY, EFFICIENCY, AND FIRST RESULTS , 2015, 1502.05035.

[29]  Observatoire de Haute-Provence,et al.  SOPHIE velocimetry of Kepler transit candidates XIII. KOI-189 b and KOI-686 b: two very low-mass stars in long-period orbits , 2014, 1410.5248.

[30]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[31]  R. Brahm,et al.  juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[33]  Ming Zhao,et al.  Toward Space-like Photometric Precision from the Ground with Beam-shaping Diffusers , 2017, 1710.01790.

[34]  F. Pepe,et al.  The Rossiter-McLaughlin effect reloaded: Probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems , 2016, 1602.00322.

[35]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[36]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[37]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[38]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[39]  Elisa V. Quintana,et al.  A Revised Exoplanet Yield from the Transiting Exoplanet Survey Satellite (TESS) , 2018, The Astrophysical Journal Supplement Series.

[40]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[41]  E. Petigura,et al.  Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library , 2017, 1701.00922.