Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France)

The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrenees, an alignment of twenty-nine hot springs (29 ∘ C to 73 ∘ C), along the normal Tet fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro-and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Tet fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1) in brittle fault damage zones at the intersection between the Tet fault and subsidiary faults or (2) in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

[1]  C. Siebert,et al.  2D and 3D coexisting modes of thermal convection in fractured hydrothermal systems - Implications for transboundary flow in the Lower Yarmouk Gorge , 2016 .

[2]  J. Schmittbuhl,et al.  Geothermal implications for fracture-filling hydrothermal precipitation , 2016 .

[3]  N. R. Backeberg,et al.  Alteration-weakening leading to localized deformation in a damage aureole adjacent to a dormant shear zone , 2016 .

[4]  A. Teixell,et al.  Tectonothermal history of an exhumed thrust‐sheet‐top basin: An example from the south Pyrenean thrust belt , 2016 .

[5]  A. Berger,et al.  Inherited structural controls on fault geometry, architecture and hydrothermal activity: an example from Grimsel Pass, Switzerland , 2016, Swiss Journal of Geosciences.

[6]  J. Chéry,et al.  Impact of gravity forces and topography denudation on normal faulting in Central–Western Pyrenees: Insights from 2D numerical models , 2016 .

[7]  R. Soliva,et al.  Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs , 2015 .

[8]  D. Teagle,et al.  Changes in hot spring temperature and hydrogeology of the Alpine Fault hanging wall, New Zealand, induced by distal South Island earthquakes , 2014 .

[9]  Inga Moeck,et al.  Catalog of geothermal play types based on geologic controls , 2014 .

[10]  Eric Sonnenthal,et al.  Reactive transport modeling of the Dixie Valley geothermal area: Insights on flow and geothermometry , 2014 .

[11]  Olivier Bour,et al.  Fault zone hydrogeology , 2013 .

[12]  J. Chéry,et al.  Erosion-induced isostatic rebound triggers extension in low convergent mountain ranges , 2013 .

[13]  Albert Genter,et al.  Structure of hydrothermal convection in the Upper Rhine Graben as inferred from corrected temperature data and basin-scale numerical models , 2012 .

[14]  C. Gable,et al.  Analytical and numerical models of hydrothermal fluid flow at fault intersections , 2012 .

[15]  R. Soliva,et al.  The importance of the degree of cataclasis in shear bands for fluid flow in porous sandstone, Provence, France , 2012 .

[16]  C. Petit,et al.  Steep topographic slope preservation by anisotropic diffusion: An example from the Neogene Têt fault scarp, eastern Pyrenees , 2012 .

[17]  T. Mitchell,et al.  Towards quantifying the matrix permeability of fault damage zones in low porosity rocks , 2012 .

[18]  P. Lacan,et al.  Active Tectonics of the Pyrenees: a review , 2012 .

[19]  J. Caine,et al.  Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada , 2010 .

[20]  Francesco Salvini,et al.  Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil , 2010 .

[21]  Zoe K. Shipton,et al.  A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones , 2010 .

[22]  Fabien Magri,et al.  Deep geothermal groundwater flow in the Seferihisar–Balçova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes , 2010 .

[23]  Albert Genter,et al.  Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS) , 2010 .

[24]  P. Ledru,et al.  Thermal anomalies and geological structures in the Provence basin: Implications for hydrothermal circulations at depth , 2010 .

[25]  M. Coolbaugh,et al.  Characterizing Structural Controls of Geothermal Reservoirs in the Great Basin, USA, and Western Turkey: Developing Successful Exploration Strategies in Extended Terranes , 2010 .

[26]  H. Traineau,et al.  Assessment of the Bouillante Geothermal Field (Guadeloupe, French West Indies): Toward a Conceptual Model of the High Temperature Geothermal System , 2010 .

[27]  L. Guillou-Frottier,et al.  Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns , 2009 .

[28]  M. Evans,et al.  Hydrothermal heat flow near the Main Central Thrust, central Nepal Himalaya , 2009 .

[29]  P. Adler,et al.  Hydrothermal convection in and around mineralized fault zones: insights from two‐ and three‐dimensional numerical modeling applied to the Ashanti belt, Ghana , 2009 .

[30]  F. Vuataz,et al.  Numerical modelling of Alpine deep flow systems: a management and prediction tool for an exploited geothermal reservoir (Lavey-les-Bains, Switzerland) , 2009 .

[31]  J. Walsh,et al.  Outcrop Studies of Shale Smears on Fault Surface , 2009 .

[32]  P. Monié,et al.  The Meso-Cenozoic thermo-tectonic evolution of the Eastern Pyrenees: an 40Ar/39Ar fission track and (U–Th)/He thermochronological study of the Canigou and Mont-Louis massifs , 2008 .

[33]  H. Fossen,et al.  Deformation bands and their influence on fluid flow , 2007 .

[34]  J. Ligtenberg Detection of fluid migration pathways in seismic data: implications for fault seal analysis , 2005 .

[35]  R. Soliva,et al.  A linkage criterion for segmented normal faults , 2004 .

[36]  Richard H. Sibson,et al.  Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand , 2004 .

[37]  D. Blackwell,et al.  Numerical modeling of transient Basin and Range extensional geothermal systems , 2004 .

[38]  Stephen E. Laubach,et al.  Are open fractures necessarily aligned with maximum horizontal stress , 2004 .

[39]  G. Garven,et al.  Thermal convection in faulted extensional sedimentary basins: theoretical results from finite‐element modeling , 2004 .

[40]  M. Font,et al.  The northern segment of the Têt Fault (Pyrenees-Orientales) : Neogene evolution and geomorphic implications , 2004 .

[41]  A. Brogi,et al.  Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow , 2004 .

[42]  Andrew Nicol,et al.  Formation of segmented normal faults: a 3-D perspective , 2003 .

[43]  O. Maurel L' exhumation de la zone axiale des Pyrénées orientales : une approche thermo-chronologique multi-méthodes du rôle des failles , 2003 .

[44]  O. Maurel,et al.  Exhumation cénozoı̈que des massifs du Canigou et de Mont-Louis (Pyrénées orientales, France) , 2002 .

[45]  Robert J. Knipe,et al.  The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf , 2001 .

[46]  D. Faulkner,et al.  On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain , 2001 .

[47]  S. Grasby,et al.  Controls on the distribution of thermal springs in the southern Canadian Cordillera , 2001 .

[48]  Atilla Aydin,et al.  Fractures, faults, and hydrocarbon entrapment, migration and flow , 2000 .

[49]  Richard H. Sibson,et al.  Fluid involvement in normal faulting , 2000 .

[50]  L. Rivera,et al.  PRESENT AND RECENT STRESS REGIME IN THE EASTERN PART OF THE PYRENEES , 1999 .

[51]  M. Person,et al.  Convective fluid flow through heterogeneous country rocks during contact metamorphism , 1998 .

[52]  M. Rabinowicz,et al.  Two‐ and three‐dimensional modeling of hydrothermal convection in the sedimented Middle Valley segment, Juan de Fuca Ridge , 1998 .

[53]  A. Souriau,et al.  A new synthesis of Pyrenean seismicity and its tectonic implications , 1998 .

[54]  J. Karson,et al.  Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction , 1997 .

[55]  James P. Evans,et al.  Permeability of fault-related rocks, and implications for hydraulic structure of fault zones , 1997 .

[56]  B. Freeman,et al.  Quantitative Fault Seal Prediction , 1997 .

[57]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[58]  M. Zoback,et al.  Fluid flow along potentially active faults in crystalline rock: Geology , 1995 .

[59]  Leslie Smith,et al.  Fluid Flow in Fault Zones: Analysis of the Interplay of Convective Circulation and Topographically Driven Groundwater Flow , 1995 .

[60]  L. Marini,et al.  Lake Bogoria hot springs (Kenya): geochemical features and geothermal implications , 1992 .

[61]  Richard H. Sibson,et al.  Earthquake rupturing as a mineralizing agent in hydrothermal systems , 1987 .

[62]  Craig B. Forster,et al.  The Influence of Groundwater Flow on Thermal Regimes in Mountainous Terrain , 1986 .

[63]  Paul A. Witherspoon,et al.  The relationship of the degree of interconnection to permeability in fracture networks , 1985 .

[64]  W. Brace Permeability of crystalline rocks: New in situ measurements , 1984 .

[65]  W. Brace Permeability of crystalline and argillaceous rocks , 1980 .

[66]  Richard H. Sibson,et al.  Fault rocks and fault mechanisms , 1977, Journal of the Geological Society.

[67]  P. Black Harmotome from the Tokatoka district, New Zealand , 1969, Mineralogical magazine.

[68]  Elizabeth F. Littlefield,et al.  Remote sensing of geothermal-related minerals for resource exploration in Nevada , 2015 .

[69]  M. Delmas,et al.  The Têt River Valley: A Condensed Record of Long-Term Landscape Evolution in the Pyrenees , 2014 .

[70]  J. Faulds,et al.  structural controls on Geothermal systems in Western turkey: A Preliminary report , 2009 .

[71]  C. Wibberley,et al.  Recent advances in the understanding of fault zone internal structure: a review , 2008 .

[72]  S. Gilfillan,et al.  Enhanced fracture permeability and accompanying fluid flow in the footwall of a normal fault: The Hurricane fault at Pah Tempe hot springs, Washington County, Utah , 2006 .

[73]  Jonathan,et al.  FAULT ZONE ARCHITECTURE AND FLUID FLOW AN EXAMPLE FROM DIXIE VALLEY, NEVADA , 2003 .

[74]  Jean‑Michel Carozza,et al.  Réponse des bassins versants à l'activité tectonique : l'exemple de la terminaison orientale de la chaîne pyrénéenne. Approche morphotectonique / Drainage basins response to active tectonics: example from Eastern Pyrenees. Morphotectonic approach , 2000 .

[75]  M. Calvet Régimes des contraintes et volumes de relief dans l'est des Pyrénées/Stress regimes and volumes of reliefs in the Eastern Pyrenees , 1999 .

[76]  Robert J. Knipe,et al.  Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction , 1998, Geological Society, London, Special Publications.

[77]  Jean‑Michel Carozza Évolution des systèmes géomorphologiques en contexte orogénique : l'exemple des bassins d'alimentation du Roussillon (Pyrénées Orientales) : approche morphotectonique , 1998 .

[78]  Mohamed Krimissa Application des methodes isotopiques a l'etude des eaux thermales en milieu granitique (pyrenees, france) , 1995 .

[79]  F. Arthaud,et al.  Les fractures et les paléoncontraintes du granite hercynien de Millas (zone axiale des Pyrénées) : un cas d’étude de la tectonique cassante d’un aquifère de socle , 1993 .

[80]  J. Bousquet,et al.  Présence de failles inverses d'âge quaternaire dans l'Est des Pyrénées : implications sismotectoniques , 1992 .

[81]  Frederick M. Chester,et al.  Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California , 1986 .

[82]  R. Henley,et al.  Geothermal systems ancient and modern: a geochemical review , 1983 .

[83]  G. Melosh,et al.  A Preliminary structural Model for the blue Mountain Geothermal Field , Humboldt county , Nevada , 2022 .