Self-assembly of chlorin-e6 on γ-Fe2O3 nanoparticles: Application for larvicidal activity against Aedes aegypti.

[1]  P. Fariselli,et al.  Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome , 2018, Analytical and Bioanalytical Chemistry.

[2]  A. Christensen,et al.  Carapace epithelia are rich in large filamentous actin bundles in Daphnia magna, Daphnia pulex, and Sida crystallina (Crustacea: Cladocera) , 2018 .

[3]  R. Zbořil,et al.  Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. , 2017, Biochimica et biophysica acta. General subjects.

[4]  L. Fasolato,et al.  Antimicrobial and magnetically removable tannic acid nanocarrier: A processing aid for Listeria monocytogenes treatment for food industry applications. , 2017, Food chemistry.

[5]  Feng Chen,et al.  Hybrid Nanomaterials : Design, Synthesis, and Biomedical Applications , 2016 .

[6]  P. Gupta,et al.  Synthesis and characterization of photodynamic activity of an iodinated Chlorin p6 copper complex , 2016 .

[7]  G. Aragão,et al.  Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. , 2016, Food chemistry.

[8]  G. Miotto,et al.  Protein corona as a proteome fingerprint: The example of hidden biomarkers for cow mastitis. , 2016, Colloids and surfaces. B, Biointerfaces.

[9]  O. Horstick,et al.  Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review , 2015, PLoS neglected tropical diseases.

[10]  Wenbin Lin,et al.  A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers. , 2015, Journal of the American Chemical Society.

[11]  J. Tuček,et al.  Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles , 2015 .

[12]  K. Soo,et al.  Nanoparticles in photodynamic therapy. , 2015, Chemical reviews.

[13]  P. Sambo,et al.  Magnetic purification of curcumin from Curcuma longa rhizome by novel naked maghemite nanoparticles. , 2015, Journal of agricultural and food chemistry.

[14]  Leonardo Fernandes Fraceto,et al.  Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. , 2014, Biotechnology advances.

[15]  R. Stollberger,et al.  A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. , 2014, Chemistry.

[16]  N. V. von Moos,et al.  Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps , 2014, Nanotoxicology.

[17]  J. L. Oliveira,et al.  Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review , 2014 .

[18]  J. Tuček,et al.  Core-shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst. , 2014, Biosensors & bioelectronics.

[19]  Melanie Kah,et al.  Nanopesticide research: current trends and future priorities. , 2014, Environment international.

[20]  G. Miotto,et al.  Magnetic Nanoparticles with Covalently Bound Self-Assembled Protein Corona for Advanced Biomedical Applications , 2013 .

[21]  Mélanie Auffan,et al.  Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species , 2013, PloS one.

[22]  R. Zbořil,et al.  Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[23]  Petr Novák,et al.  Setup of Mössbauer Spectrometers at RCPTM , 2012 .

[24]  P. Di Martino,et al.  Efficacy of sunlight-activatable porphyrin formulates on larvae of Anopheles gambiae M and S molecular forms and An. arabiensis: a potential novel biolarvicide for integrated malaria vector control. , 2012, Acta tropica.

[25]  R. Merlanti,et al.  Sublethal effects of trimethoprim on four freshwater organisms. , 2012, Ecotoxicology and environmental safety.

[26]  Roberto Stevanato,et al.  Charge binding of rhodamine derivative to OH- stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. , 2012, Acta biomaterialia.

[27]  G. Miotto,et al.  Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles , 2012, International journal of nanomedicine.

[28]  Mary L McHugh,et al.  Multiple comparison analysis testing in ANOVA. , 2011, Biochemia medica.

[29]  A. Petrusek,et al.  Daphnia as a model organism in limnology and aquatic biology: introductory remarks , 2011 .

[30]  N. Thanh,et al.  Functionalisation of nanoparticles for biomedical applications , 2010 .

[31]  L. Dama,et al.  Larvicidal activity of Cestrum nocturnum on Aedes aegypti , 2010 .

[32]  N. Beebe,et al.  The dengue vector Aedes aegypti: what comes next. , 2010, Microbes and infection.

[33]  Dalibor Jancik,et al.  Universal LabVIEW-powered Mössbauer spectrometer based on USB, PCI or PXI devices , 2010 .

[34]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[35]  H. Ranson,et al.  Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. , 2008, Insect biochemistry and molecular biology.

[36]  A. Kalinin,et al.  Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). , 2006, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[37]  Radek Zboril,et al.  Maghemite nanoparticles by view of Mössbauer spectroscopy. , 2006, Journal of nanoscience and nanotechnology.

[38]  A. Diabaté,et al.  Assessment of Laboratory and Field Assays of Sunlight-Induced Killing of Mosquito Larvae by Photosensitizers , 2005, Journal of medical entomology.

[39]  Cheng Gu,et al.  Interaction of tetracycline with aluminum and iron hydrous oxides. , 2005, Environmental science & technology.

[40]  M. Mora,et al.  Incorporation of hydrophobic porphyrins into liposomes: characterization and structural requirements. , 2004, International journal of pharmaceutics.

[41]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[42]  L. Roberts Mosquitoes and Disease , 2002, Science.

[43]  R. Mangan,et al.  Field Evaluation of a Phototoxic Dye, Phloxine B, Against Three Species of Fruit Flies (Diptera: Tephritidae) , 2001, Journal of economic entomology.

[44]  G. Taubes Searching for a Parasite's Weak Spot , 2000, Science.

[45]  Z. Klencsár,et al.  User-friendly software for Mössbauer spectrum analysis , 1996 .

[46]  J. Spikes Chlorins as photosensitizers in biology and medicine. , 1990 .

[47]  J Hanania,et al.  New trends in photobiology (Invited review) bactericidal effects of photoactivated porphyrins ― An alternative approach to antimicrobial drugs , 1990 .

[48]  J. Juvik,et al.  Porphyric insecticides. 2. 1,10-Phenanthroline, a potent porphyric insecticide modulator , 1990 .

[49]  C. Aly Filter feeding of mosquito larvae (Dipt., Culicidae) in the presence of the bacterial pathogen Bacillus thuringiensis var. israelensis , 1988 .

[50]  J. Heitz Development of Photoactivated Compounds as Pesticides , 1987 .

[51]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[52]  A. Huitson,et al.  A general treatment and classification of the solute adsorption isotherm. I. Theoretical , 1974 .

[53]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[54]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[55]  .. Z.I.A.AL-Fifi,et al.  Larvicidal and repellent effect of some Tribulus terrestris L., (Zygophyllaceae) extracts against the dengue fever mosquito, Aedes aegypti (Diptera: Culicidae) , 2016 .

[56]  T. El-Tayeb,et al.  Photodynamic Control of Malaria Vector, Noxious Insects and Parasites , 2014 .

[57]  S. Magdassi,et al.  Nanotechnology: An Advanced Approach to the Development of Potent Insecticides , 2013 .

[58]  Manivannan Ethirajan,et al.  The role of porphyrin chemistry in tumor imaging and photodynamic therapy. , 2011, Chemical Society reviews.

[59]  L. Green,et al.  FUNCTIONALIZATION OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS , 2010 .

[60]  Ralf Nauen,et al.  Insecticides design using advanced technologies , 2007 .

[61]  D. Marković,et al.  In vitro complexes of copper and zinc with chlorophyll , 2006 .

[62]  D. Ebert Ecology, Epidemiology, and Evolution of Parasitism in Daphnia , 2005 .

[63]  B. B. Johnson,et al.  Modeling the adsorption of citric acid onto Muloorina illite and related clay minerals , 2003 .

[64]  Karl Pomplun,et al.  Über die Adsorption in Lösungen , 2022 .