An Approximate Likelihood Perspective on ABC Methods

We are living in the big data era, as current technologies and networks allow for the easy and routine collection of data sets in different disciplines. Bayesian Statistics offers a flexible modeling approach which is attractive for describing the complexity of these datasets. These models often exhibit a likelihood function which is intractable due to the large sample size, high number of parameters, or functional complexity. Approximate Bayesian Computational (ABC) methods provides likelihood-free methods for performing statistical inferences with Bayesian models defined by intractable likelihood functions. The vastity of the literature on ABC methods created a need to review and relate all ABC approaches so that scientists can more readily understand and apply them for their own work. This article provides a unifying review, general representation, and classification of all ABC methods from the view of approximate likelihood theory. This clarifies how ABC methods can be characterized, related, combined, improved, and applied for future research. Possible future research in ABC is then suggested.

[1]  S. A. Sisson,et al.  Likelihood-free Bayesian inference for alpha-stable models , 2009 .

[2]  A. Estoup,et al.  Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis , 2011, Molecular ecology.

[3]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[4]  Peter Neal,et al.  Efficient likelihood-free Bayesian Computation for household epidemics , 2012, Stat. Comput..

[5]  Dennis Prangle,et al.  Lazy ABC , 2014, Stat. Comput..

[6]  A. Sitek,et al.  ABC in Nuclear Imaging , 2016, Handbook of Approximate Bayesian Computation.

[7]  Christian P Robert,et al.  Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.

[8]  A. Pettitt,et al.  Approximate Bayesian computation using indirect inference , 2011 .

[9]  S. Tavaré,et al.  Using the fossil record to estimate the age of the last common ancestor of extant primates , 2002, Nature.

[10]  W. Stephan,et al.  msABC: a modification of Hudson’s ms to facilitate multi‐locus ABC analysis , 2010, Molecular ecology resources.

[11]  Scott A. Sisson,et al.  Modelling extremes using approximate Bayesian Computation , 2014, 1411.1451.

[12]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[13]  Elise Jennings,et al.  astroABC : An Approximate Bayesian Computation Sequential Monte Carlo sampler for cosmological parameter estimation , 2016, Astron. Comput..

[14]  Anthony N. Pettitt,et al.  Discussion of : constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation , 2012 .

[15]  Marc Colonna,et al.  Overdiagnosis from non-progressive cancer detected by screening mammography: stochastic simulation study with calibration to population based registry data , 2011, BMJ : British Medical Journal.

[16]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[17]  ABootstrapLikelihoodapproachtoBayesianComputation,et al.  A Bootstrap Likelihood Approach to Bayesian Computation , 2015, 1510.07287.

[18]  Brandon M. Turner,et al.  A generalized, likelihood-free method for posterior estimation , 2014, Psychonomic bulletin & review.

[19]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[20]  A. von Haeseler,et al.  Inference of population history using a likelihood approach. , 1998, Genetics.

[21]  P. Crescenzi,et al.  Cophylogeny Reconstruction via an Approximate Bayesian Computation , 2014, Systematic biology.

[22]  Jean-Marie Cornuet,et al.  GENETIC ANALYSIS OF COMPLEX DEMOGRAPHIC SCENARIOS: SPATIALLY EXPANDING POPULATIONS OF THE CANE TOAD, BUFO MARINUS , 2004, Evolution; international journal of organic evolution.

[23]  Scott A. Sisson,et al.  Inferences on the Acquisition of Multi-Drug Resistance in Mycobacterium Tuberculosis Using Molecular Epidemiological Data , 2017, Handbook of Approximate Bayesian Computation.

[24]  Julien Cornebise,et al.  On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo , 2011, Statistical applications in genetics and molecular biology.

[25]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[26]  Rachele Anderson,et al.  Approximate maximum likelihood estimation using data-cloning ABC , 2015, Comput. Stat. Data Anal..

[27]  Daniel Wegmann,et al.  A Guide to General-Purpose ABC Software , 2018, Handbook of Approximate Bayesian Computation.

[28]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[29]  Jinhong Yuan,et al.  Bayesian Symbol Detection in Wireless Relay Networks via Likelihood-Free Inference , 2010, IEEE Transactions on Signal Processing.

[30]  Nikolas Kantas,et al.  Approximate Inference for Observation-Driven Time Series Models with Intractable Likelihoods , 2014, TOMC.

[31]  Katalin Csill'ery,et al.  abc: an R package for approximate Bayesian computation (ABC) , 2011, 1106.2793.

[32]  Umberto Picchini abc-sde: A MATLAB toolbox for approximate Bayesian computation (ABC) in stochastic differential equation models , 2013 .

[33]  Simon Tavaré,et al.  Approximate Bayesian Computation and MCMC , 2004 .

[34]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[35]  Nicolas Ray,et al.  Bayesian Estimation of Recent Migration Rates After a Spatial Expansion , 2005, Genetics.

[36]  Sylvia Richardson,et al.  Monte Carlo algorithms for model assessment via conflicting summaries , 2011, 1106.5919.

[37]  A. Amara,et al.  Accelerating Approximate Bayesian Computation with Quantile Regression: application to cosmological redshift distributions , 2017, 1707.07498.

[38]  Mattias Jakobsson,et al.  Deep divergences of human gene trees and models of human origins. , 2011, Molecular biology and evolution.

[39]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[40]  L. Chikhi,et al.  Origin and number of founders in an introduced insular primate: estimation from nuclear genetic data , 2008, Molecular ecology.

[41]  Anthony Lee,et al.  Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation , 2012, 1210.6703.

[42]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[43]  Minoru Yoneda,et al.  Quantitative Reconstruction of Weaning Ages in Archaeological Human Populations Using Bone Collagen Nitrogen Isotope Ratios and Approximate Bayesian Computation , 2013, PloS one.

[44]  Erik M. Volz,et al.  Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection , 2012, PLoS Comput. Biol..

[45]  Michael J. Hickerson,et al.  A MULTILOCUS PERSPECTIVE ON COLONIZATION ACCOMPANIED BY SELECTION AND GENE FLOW , 2007, Evolution; international journal of organic evolution.

[46]  Franck Jabot,et al.  A comparison of emulation methods for Approximate Bayesian Computation , 2014, 1412.7560.

[47]  Max Welling,et al.  GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation , 2014, UAI.

[48]  Yong Huang,et al.  Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models , 2017 .

[49]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[50]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[51]  Enrico R. Crema,et al.  An Approximate Bayesian Computation approach for inferring patterns of cultural evolutionary change , 2014 .

[52]  Jukka Corander,et al.  Inferring Cognitive Models from Data using Approximate Bayesian Computation , 2016, CHI.

[53]  Laurent Excoffier,et al.  ABCtoolbox: a versatile toolkit for approximate Bayesian computations , 2010, BMC Bioinformatics.

[54]  Arnaud Guyader,et al.  New insights into Approximate Bayesian Computation , 2012, 1207.6461.

[55]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[56]  Brandon M. Turner,et al.  Journal of Mathematical Psychology a Tutorial on Approximate Bayesian Computation , 2022 .

[57]  Michael P H Stumpf,et al.  Bayesian design strategies for synthetic biology , 2011, Interface Focus.

[58]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[59]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[60]  A. Amara,et al.  Approximate Bayesian computation for forward modeling in cosmology , 2015, 1504.07245.

[61]  Daniel Silk,et al.  Optimizing Threshold - Schedules for Approximate Bayesian Computation Sequential Monte Carlo Samplers: Applications to Molecular Systems , 2012 .

[62]  A. Futschik,et al.  A Novel Approach for Choosing Summary Statistics in Approximate Bayesian Computation , 2012, Genetics.

[63]  Jean-Jacques Forneron,et al.  The ABC of simulation estimation with auxiliary statistics , 2015, Journal of Econometrics.

[64]  Stéphan Clémençon,et al.  PBPK and population modelling to interpret urine cadmium concentrations of the French population. , 2014, Toxicology and applied pharmacology.

[65]  Theodore Kypraios,et al.  Piecewise Approximate Bayesian Computation: fast inference for discretely observed Markov models using a factorised posterior distribution , 2015, Stat. Comput..

[66]  Faming Liang,et al.  A Bootstrap Metropolis–Hastings Algorithm for Bayesian Analysis of Big Data , 2016, Technometrics.

[67]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[68]  M. Beaumont Approximate Bayesian Computation in Evolution and Ecology , 2010 .

[69]  A. Seheult,et al.  Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments , 1997 .

[70]  Joao S. Lopes,et al.  PopABC: a program to infer historical demographic parameters , 2009, Bioinform..

[71]  Yves F. Atchad'e,et al.  On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods , 2013, 1306.4032.

[72]  Brandon M. Turner,et al.  Hierarchical Approximate Bayesian Computation , 2013, Psychometrika.

[73]  S. Sisson,et al.  Likelihood-free Markov chain Monte Carlo , 2010, 1001.2058.

[74]  Alan E. Gelfand,et al.  Approximate Bayesian Computation and Model Validation for Repulsive Spatial Point Processes , 2016 .

[75]  Michael P. H. Stumpf,et al.  ABC in systems biology , 2018 .

[76]  Scott A. Sisson,et al.  Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model , 2015, 1504.04093.

[77]  Kerrie Mengersen,et al.  Approximating the likelihood in approximate Bayesian computation , 2018, 1803.06645.

[78]  Paul D. W. Kirk,et al.  Inferring extrinsic noise from single-cell gene expression data using approximate Bayesian computation , 2015, bioRxiv.

[79]  Stuart Barber,et al.  The Rate of Convergence for Approximate Bayesian Computation , 2013, 1311.2038.

[80]  Laura S Kubatko,et al.  Estimating species trees using approximate Bayesian computation. , 2011, Molecular phylogenetics and evolution.

[81]  Thomas A. Dean,et al.  Asymptotic behaviour of approximate Bayesian estimators , 2011, 1105.3655.

[82]  Yudi Pawitan Computing empirical likelihood from the bootstrap , 2000 .

[83]  Guillaume Laval,et al.  Statistical Applications in Genetics and Molecular Biology Deviance Information Criteria for Model Selection in Approximate Bayesian Computation , 2011 .

[84]  Scott A. Sisson,et al.  A Model-Based Bayesian Estimation of the Rate of Evolution of VNTR Loci in Mycobacterium tuberculosis , 2012, PLoS Comput. Biol..

[85]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[86]  Ingram Olkin,et al.  Unbiased Estimation of Some Multivariate Probability Densities and Related Functions , 1969 .

[87]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[88]  Wen-Jer Wu,et al.  Global Invasion History of the Fire Ant Solenopsis invicta , 2011, Science.

[89]  Francois Olivier,et al.  Deviance Information Criteria for Model Selection in Approximate Bayesian Computation , 2011 .

[90]  P. Donnelly,et al.  Inferring coalescence times from DNA sequence data. , 1997, Genetics.

[91]  Christian P Robert,et al.  Molecular Ecology Ressources – subject area: Methodological Advances 1 2 Estimation of demo-genetic model probabilities with Approximate Bayesian 3 Computation using linear discriminant analysis on summary statistics , 2012 .

[92]  Jeremy E. Oakley,et al.  Approximate Bayesian Computation and simulation based inference for complex stochastic epidemic models , 2018 .

[93]  Brenda N. Vo,et al.  Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation. , 2015, Mathematical biosciences.

[94]  Paul Marjoram,et al.  Statistical Applications in Genetics and Molecular Biology Approximately Sufficient Statistics and Bayesian Computation , 2011 .

[95]  Ollivier Hyrien,et al.  A Stochastic Model to Analyze Clonal Data on Multi‐Type Cell Populations , 2005, Biometrics.

[96]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[97]  W. Li,et al.  Estimating the age of the common ancestor of a sample of DNA sequences. , 1997, Molecular biology and evolution.

[98]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[99]  M. Gutmann,et al.  Approximate Bayesian Computation , 2019, Annual Review of Statistics and Its Application.

[100]  Jing Wang,et al.  Approximate Bayesian Computation for Exponential Random Graph Models for Large Social Networks , 2014, Commun. Stat. Simul. Comput..

[101]  D. L. Sean McElwain,et al.  Interpreting scratch assays using pair density dynamics and approximate Bayesian computation , 2014, Open Biology.

[102]  Michael Creel,et al.  On selection of statistics for approximate Bayesian computing (or the method of simulated moments) , 2016, Comput. Stat. Data Anal..

[103]  John F. Monahan,et al.  Bootstrap methods using prior information , 1986 .

[104]  Genya Kobayashi A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice , 2014, Comput. Stat. Data Anal..

[105]  Anthony N. Pettitt,et al.  Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation , 2015, PLoS Comput. Biol..

[106]  Michael J. Hickerson,et al.  msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation , 2007, BMC Bioinformatics.

[107]  Laurent Excoffier,et al.  Bayesian inference of the demographic history of chimpanzees. , 2010, Molecular biology and evolution.

[108]  Shirin Golchi,et al.  Sequentially Constrained Monte Carlo , 2014, Comput. Stat. Data Anal..

[109]  Joanna L. Mountain,et al.  REJECTOR: software for population history inference from genetic data via a rejection algorithm , 2008, Bioinform..

[110]  George Karabatsos,et al.  On Bayesian Testing of Additive Conjoint Measurement Axioms Using Synthetic Likelihood , 2017, Psychometrika.

[111]  Denys Pommeret,et al.  Likelihood-free parallel tempering , 2011, Stat. Comput..

[112]  Gareth W. Peters,et al.  On sequential Monte Carlo, partial rejection control and approximate Bayesian computation , 2008, Statistics and Computing.

[113]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[114]  Robert Leenders,et al.  Hamiltonian ABC , 2015, UAI.

[115]  Ajay Jasra,et al.  Approximate Bayesian Computation for a Class of Time Series Models , 2014, 1401.0265.

[116]  Frank Technow,et al.  Integrating Crop Growth Models with Whole Genome Prediction through Approximate Bayesian Computation , 2015, bioRxiv.

[117]  Jean-Marie Cornuet,et al.  Application of Approximate Bayesian Computation to infer the genetic history of Pygmy hunter-gatherers populations from Western Central Africa , 2018 .

[118]  D. Balding,et al.  Statistical Applications in Genetics and Molecular Biology On Optimal Selection of Summary Statistics for Approximate Bayesian Computation , 2011 .

[119]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[120]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[121]  Andrew R. Francis,et al.  The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis , 2009, Proceedings of the National Academy of Sciences.

[122]  Mattias Jakobsson,et al.  A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. , 2006, Molecular biology and evolution.

[123]  Daniel Wegmann,et al.  FITTING MODELS OF CONTINUOUS TRAIT EVOLUTION TO INCOMPLETELY SAMPLED COMPARATIVE DATA USING APPROXIMATE BAYESIAN COMPUTATION , 2012, Evolution; international journal of organic evolution.

[124]  David M. Blei,et al.  Variational Inference: A Review for Statisticians , 2016, ArXiv.

[125]  Theodore Kypraios,et al.  A tutorial introduction to Bayesian inference for stochastic epidemic models using Approximate Bayesian Computation. , 2017, Mathematical biosciences.

[126]  Adam M. Johansen,et al.  A simple approach to maximum intractable likelihood estimation , 2013 .

[127]  Christian P. Robert,et al.  Model choice versus model criticism , 2009, Proceedings of the National Academy of Sciences.

[128]  Anthony N. Pettitt,et al.  Bayesian indirect inference using a parametric auxiliary model , 2015, 1505.03372.

[129]  Brunero Liseo,et al.  Approximate Bayesian Computation for Copula Estimation , 2015 .

[130]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[131]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[132]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[133]  Robert E. McCulloch,et al.  On the Determination of General Scientific Models With Application to Asset Pricing , 2009 .

[134]  Anthony N Pettitt,et al.  Bayesian Experimental Design for Models with Intractable Likelihoods , 2013, Biometrics.

[135]  Wen Huang,et al.  MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity , 2011, BMC Bioinformatics.

[136]  G. Luikart,et al.  COMPUTER PROGRAMS: onesamp: a program to estimate effective population size using approximate Bayesian computation , 2008, Molecular ecology resources.

[137]  Hans R. Künsch,et al.  A simulated annealing approach to approximate Bayes computations , 2012, Statistics and Computing.

[138]  H. Raiffa,et al.  Introduction to Statistical Decision Theory , 1996 .

[139]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[140]  Oliver Ratmann,et al.  Statistical modelling of summary values leads to accurate Approximate Bayesian Computations , 2013, 1305.4283.

[141]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[142]  Bai Jiang,et al.  Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network , 2015, 1510.02175.

[143]  David Welch,et al.  epinet: An R Package to Analyze Epidemics Spread across Contact Networks , 2018 .

[144]  Matteo Fasiolo,et al.  ABC in Ecological Modelling , 2018 .

[145]  J. Marin,et al.  Population Monte Carlo , 2004 .

[146]  Peter Neal,et al.  Forward Simulation Markov Chain Monte Carlo with Applications to Stochastic Epidemic Models , 2015 .

[147]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[148]  Marius Gilbert,et al.  Climate change and the spread of vector‐borne diseases: using approximate Bayesian computation to compare invasion scenarios for the bluetongue virus vector Culicoides imicola in Italy , 2013, Molecular ecology.

[149]  Jean-Marie Cornuet,et al.  Efficient learning in ABC algorithms , 2012, 1210.1388.

[150]  Christian N. K. Anderson,et al.  Serial SimCoal: A population genetics model for data from multiple populations and points in time , 2005, Bioinform..

[151]  B. Mallick,et al.  Generalized Nonlinear Modeling With Multivariate Free-Knot Regression Splines , 2003 .

[152]  Stefan T. Radev,et al.  ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison , 2018, PloS one.

[153]  Nicolas Chopin,et al.  Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.

[154]  Yee Whye Teh,et al.  DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression , 2016, ICML.

[155]  David J. Nott,et al.  Variational Bayes With Intractable Likelihood , 2015, 1503.08621.

[156]  Franck Jabot,et al.  Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model , 2015 .

[157]  Wenxin Jiang,et al.  The Indirect Method: Inference Based on Intermediate Statistics—A Synthesis and Examples , 2004 .

[158]  H. L. MacGillivray,et al.  Skewness and Asymmetry: Measures and Orderings , 1986 .

[159]  Charles E. Clark,et al.  Monte Carlo , 2006 .

[160]  Guillaume Deffuant,et al.  Adaptive approximate Bayesian computation for complex models , 2011, Computational Statistics.

[161]  L. Excoffier,et al.  Efficient Approximate Bayesian Computation Coupled With Markov Chain Monte Carlo Without Likelihood , 2009, Genetics.

[162]  Christopher C. Drovandi,et al.  Pre-processing for approximate Bayesian computation in image analysis , 2015, Stat. Comput..

[163]  Jean-Marie Cornuet,et al.  Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0) , 2010, BMC Bioinformatics.

[164]  Rob Deardon,et al.  Computational Statistics and Data Analysis Simulation-based Bayesian Inference for Epidemic Models , 2022 .

[165]  J. Marin,et al.  Adaptivity for ABC algorithms: the ABC-PMC scheme , 2008 .

[166]  H. L. Mac Gillivray,et al.  Shape properties of the g-and-h and johnson families , 1992 .

[167]  Thomas Thorne,et al.  Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[168]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[169]  Franck Jabot,et al.  Analyzing Tropical Forest Tree Species Abundance Distributions Using a Nonneutral Model and through Approximate Bayesian Inference , 2011, The American Naturalist.

[170]  Kevin R. Thornton,et al.  Automating approximate Bayesian computation by local linear regression , 2009, BMC Genetics.

[171]  Gareth W. Peters,et al.  Likelihood-free Bayesian inference for α-stable models , 2012, Comput. Stat. Data Anal..

[172]  Kenneth N. Brown,et al.  Graph metrics as summary statistics for Approximate Bayesian Computation with application to network model parameter estimation , 2015, J. Complex Networks.

[173]  Yum K. Kwan Asymptotic Bayesian analysis based on a limited information estimator , 1999 .

[174]  Jae-Young Kim,et al.  Limited information likelihood and Bayesian analysis , 2002 .

[175]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[176]  Brandon M. Turner,et al.  Approximate Bayesian computation with differential evolution , 2012 .

[177]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[178]  Gersende Fort,et al.  CosmoPMC: Cosmology Population Monte Carlo , 2011, 1101.0950.

[179]  Yohei Murakami,et al.  Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology , 2014, PloS one.

[180]  Anil Prakash,et al.  Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: a precursor to successful worldwide colonization? , 2016, Molecular ecology.

[181]  Richard D Wilkinson,et al.  Estimating primate divergence times by using conditioned birth-and-death processes. , 2009, Theoretical population biology.

[182]  S. A. Sisson,et al.  Overview of Approximate Bayesian Computation , 2018, 1802.09720.

[183]  Aaron Smith,et al.  The use of a single pseudo-sample in approximate Bayesian computation , 2014, Stat. Comput..

[184]  Michael P. H. Stumpf,et al.  Simulation-based model selection for dynamical systems in systems and population biology , 2009, Bioinform..

[185]  Paul Fearnhead,et al.  Semi-automatic selection of summary statistics for ABC model choice , 2013, Statistical applications in genetics and molecular biology.

[186]  Jean-Marie Cornuet,et al.  Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation , 2008, Bioinform..

[187]  W. M. Wood-Vasey,et al.  LIKELIHOOD-FREE COSMOLOGICAL INFERENCE WITH TYPE Ia SUPERNOVAE: APPROXIMATE BAYESIAN COMPUTATION FOR A COMPLETE TREATMENT OF UNCERTAINTY , 2012, 1206.2563.

[188]  E. E. O. Ishida,et al.  cosmoabc: Likelihood-free inference via Population Monte Carlo Approximate Bayesian Computation , 2015, Astron. Comput..

[189]  Andrew R. Francis,et al.  Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.

[190]  H A Lessios,et al.  TEST FOR SIMULTANEOUS DIVERGENCE USING APPROXIMATE BAYESIAN COMPUTATION , 2006, Evolution; international journal of organic evolution.

[191]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.

[192]  S. Tavaré,et al.  Modern computational approaches for analysing molecular genetic variation data , 2006, Nature Reviews Genetics.

[193]  Richard G. Everitt,et al.  Likelihood-free estimation of model evidence , 2011 .

[194]  Erlis Ruli,et al.  Approximate Bayesian computation with composite score functions , 2013, Stat. Comput..

[195]  Christian P. Robert,et al.  Approximate Bayesian Computation: A Survey on Recent Results , 2014, MCQMC.

[196]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[197]  Paul Marjoram,et al.  Approximation Bayesian Computation. , 2013, OA genetics.

[198]  Jean-Marie Hombert,et al.  Origins and Genetic Diversity of Pygmy Hunter-Gatherers from Western Central Africa , 2009, Current Biology.

[199]  Katia Koelle,et al.  Phylodynamic Inference and Model Assessment with Approximate Bayesian Computation: Influenza as a Case Study , 2012, PLoS Comput. Biol..

[200]  Tom Burr,et al.  Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models , 2013, BioMed research international.

[201]  Christos Dimitrakakis,et al.  ABC Reinforcement Learning , 2013, ICML.

[202]  Sean R. Anderson,et al.  Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation , 2016, Int. J. Syst. Sci..

[203]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[204]  D. J. Nott,et al.  Approximate Bayesian computation via regression density estimation , 2012, 1212.1479.

[205]  Richard Wilkinson,et al.  Accelerating ABC methods using Gaussian processes , 2014, AISTATS.

[206]  Christian P. Robert,et al.  Simulation in statistics , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[207]  C. Robert,et al.  ABC likelihood-free methods for model choice in Gibbs random fields , 2008, 0807.2767.

[208]  Franck Jabot,et al.  EasyABC: performing efficient approximate Bayesian computation sampling schemes using R , 2013 .

[209]  A. N. Pettitt,et al.  Approximate Bayesian Computation for astronomical model analysis: a case study in galaxy demographics and morphological transformation at high redshift , 2012, 1202.1426.

[210]  Paul Fearnhead,et al.  Behaviour of ABC for Big Data , 2015 .

[211]  Markus Hainy,et al.  Likelihood-free simulation-based optimal design with an application to spatial extremes , 2015, Stochastic Environmental Research and Risk Assessment.

[212]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[213]  Christian P Robert,et al.  Bayesian computation via empirical likelihood , 2012, Proceedings of the National Academy of Sciences.

[214]  Noah A Rosenberg,et al.  AABC: approximate approximate Bayesian computation for inference in population-genetic models. , 2015, Theoretical population biology.

[215]  Francois Septier,et al.  SMC-ABC methods for the estimation of stochastic simulation models of the limit order book , 2015 .

[216]  Andreas Huth,et al.  Statistical inference for stochastic simulation models--theory and application. , 2011, Ecology letters.

[217]  Fabrizio Leisen,et al.  A Bootstrap Likelihood Approach to Bayesian Computation , 2015, 1510.07287.

[218]  Richard L. Smith,et al.  Approximate Bayesian computing for spatial extremes , 2011, Comput. Stat. Data Anal..

[219]  Albert Y. Lo,et al.  Consistent and Robust Bayes Procedures for Location Based on Partial Information , 1990 .

[220]  Jean-Marie Cornuet,et al.  ABC model choice via random forests , 2014, 1406.6288.

[221]  David J. Wagg,et al.  Model selection and parameter estimation in structural dynamics using approximate Bayesian computation , 2018 .

[222]  Guillermo Rus-Carlborg,et al.  Approximate Bayesian Computation by Subset Simulation , 2014, SIAM J. Sci. Comput..

[223]  James M. Flegal,et al.  Bayesian inference for a flexible class of bivariate beta distributions , 2014 .

[224]  P. Marjoram,et al.  Post-GWAS: where next? More samples, more SNPs or more biology? , 2013, Heredity.

[225]  Arnaud Estoup,et al.  Reconstructing routes of invasion using genetic data: why, how and so what? , 2010, Molecular ecology.

[226]  David J. Nott,et al.  A note on approximating ABC‐MCMC using flexible classifiers , 2014 .

[227]  M. Gutmann,et al.  Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.

[228]  S. Sisson,et al.  Diagnostic tools for approximate Bayesian computation using the coverage property , 2013, 1301.3166.

[229]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[230]  Erika Cule,et al.  ABC-SysBio—approximate Bayesian computation in Python with GPU support , 2010, Bioinform..

[231]  Nicolas Ray,et al.  Colonization history of the Swiss Rhine basin by the bullhead (Cottus gobio): inference under a Bayesian spatially explicit framework , 2008, Molecular ecology.

[232]  Brunero Liseo,et al.  Approximate Integrated Likelihood via ABC methods , 2014, 1403.0387.

[233]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[234]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[235]  James Hensman,et al.  ABC for Climate: Dealing with Expensive Simulators , 2015, Handbook of Approximate Bayesian Computation.

[236]  James Cussens Approximate Bayesian Computation for the Parameters of PRISM Programs , 2010, ILP.

[237]  Christopher C. Drovandi Approximate Bayesian computation , 2017 .

[238]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[239]  G. D. Rayner,et al.  Numerical maximum likelihood estimation for the g-and-k and generalized g-and-h distributions , 2002, Stat. Comput..

[240]  Viet Chi Tran,et al.  HIV with contact tracing: a case study in approximate Bayesian computation. , 2008, Biostatistics.

[241]  Paul G. Blackwell,et al.  Coupling random inputs for parameter estimation in complex models , 2016, Stat. Comput..

[242]  Martin Lascoux,et al.  Amount of Information Needed for Model Choice in Approximate Bayesian Computation , 2014, PloS one.

[243]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[244]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[245]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[246]  Laurent E. Calvet,et al.  Accurate Methods for Approximate Bayesian Computation Filtering , 2015 .

[247]  Nicolas Chopin,et al.  ABC-EP: Expectation Propagation for Likelihoodfree Bayesian Computation , 2011, ICML.

[248]  M W Bruford,et al.  2BAD: an application to estimate the parental contributions during two independent admixture events , 2010, Molecular ecology resources.

[249]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[250]  O. François,et al.  Approximate Bayesian Computation (ABC) in practice. , 2010, Trends in ecology & evolution.

[251]  M. Beaumont,et al.  Likelihood-Free Inference of Population Structure and Local Adaptation in a Bayesian Hierarchical Model , 2010, Genetics.

[252]  B. Rannala,et al.  The Bayesian revolution in genetics , 2004, Nature Reviews Genetics.

[253]  Mark A. Beaumont,et al.  Joint determination of topology, divergence time, and immigration in population trees , 2008 .

[254]  K. Heggland,et al.  Estimating functions in indirect inference , 2004 .

[255]  D. J. Nott,et al.  Approximate Bayesian Computation and Bayes’ Linear Analysis: Toward High-Dimensional ABC , 2011, 1112.4755.

[256]  Christophe Andrieu,et al.  Reply to Robert et al.: Model criticism informs model choice and model comparison , 2009, Proceedings of the National Academy of Sciences.

[257]  Jean-Marie Cornuet,et al.  DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data , 2014, Bioinform..

[258]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[259]  G. Bertorelle,et al.  ABC as a flexible framework to estimate demography over space and time: some cons, many pros , 2010, Molecular ecology.

[260]  Paul Fearnhead,et al.  Improved Convergence of Regression Adjusted Approximate Bayesian Computation , 2016 .

[261]  L. Excoffier,et al.  Statistical evaluation of alternative models of human evolution , 2007, Proceedings of the National Academy of Sciences.

[262]  Arnold Zellner,et al.  THE BAYESIAN METHOD OF MOMENTS (BMOM) , 1997 .

[263]  Umberto Picchini Inference for SDE Models via Approximate Bayesian Computation , 2012, 1204.5459.

[264]  Laura Rifo,et al.  Long-range dependence and approximate Bayesian computation , 2017, Commun. Stat. Simul. Comput..

[265]  Christopher C. Drovandi,et al.  Variational Bayes with synthetic likelihood , 2016, Statistics and Computing.

[266]  Sumeetpal S. Singh,et al.  Filtering via approximate Bayesian computation , 2010, Statistics and Computing.

[267]  Christophe Andrieu,et al.  Model criticism based on likelihood-free inference, with an application to protein network evolution , 2009, Proceedings of the National Academy of Sciences.