Infrared (2–12 μm) solid-state laser sources: a review

Abstract The infrared domain is very attractive for many applications owing to two unique features: (i) it contains several atmospheric transparency windows, (ii) it corresponds to the ‘molecular fingerprint’ region of the electromagnetic spectrum where various molecules have strong rovibrational absorption lines. In many cases, these applications (e.g. laser surgery, trace gas monitoring, remote sensing, nonlinear spectroscopy, countermeasures, …) require coherent light radiation as the one emitted by a laser source. In this context, the choice of the proper technology is a key issue. Depending on the selected application, it could be required the source to deliver tunable emission, narrow linewidth, nearly diffraction limited beam, pulsed or continuous-wave (CW) radiation, etc. This article briefly reviews the main technologies, restricted to CW and nanosecond pulsed sources emitting in the 2–12 μm range. The technologies considered include rare-earth and transition-metal doped bulk and fiber lasers, semiconductor lasers, and optical parametric sources. Pros and cons of these technologies are then briefly discussed in the context of several selected applications. To cite this article: A. Godard, C. R. Physique 8 (2007).

[1]  A. Forchel,et al.  GaInAsSb-AlGaAsSb distributed feedback lasers emitting near 2.4 /spl mu/m , 2004, IEEE Photonics Technology Letters.

[2]  Hans P. Jenssen,et al.  Advanced solid-state lasers , 1991 .

[3]  Evgeni Sorokin,et al.  Widely Tunable Cr2+:ZnSe Laser Source for Trace-Gas Sensing , 2005 .

[4]  Mattias Beck,et al.  Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler , 2001 .

[5]  M. Razeghi,et al.  High-power continuous-wave operation of quantum-cascade lasers up to 60/spl deg/C , 2004, IEEE Photonics Technology Letters.

[6]  Xiushan Zhu,et al.  10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser , 2007 .

[7]  W. J. Alford,et al.  High-brightness, rapidly-tunable Cr:ZnSe lasers , 2005 .

[8]  Scott W. Corzine,et al.  High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .

[9]  K. Vodopyanov Mid-infrared optical parametric generator with extra-wide (3–19-µm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells , 1999 .

[10]  J. Faist,et al.  Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies , 2006 .

[11]  Difference frequency generation in a ZnGeP2 crystal pumped by a large aperture periodically poled MgO:LiNbO3 optical parametric system , 2007 .

[12]  M. Razeghi,et al.  Short wavelength (/spl lambda//spl sim/4.3 /spl mu/m) high-performance continuous-wave quantum-cascade lasers , 2005, IEEE Photonics Technology Letters.

[13]  A. Krysa,et al.  InP-based Quantum Cascade Distributed Feedback Lasers with Deeply Etched Lateral Gratings , 2006, 2006 IEEE 20th International Semiconductor Laser Conference, 2006. Conference Digest..

[14]  Antoine Godard,et al.  Dual-cavity doubly resonant optical parametric oscillators: demonstration of pulsed single-mode operation , 2000 .

[15]  Konstantin L. Vodopyanov,et al.  ZnGeP 2 optical parametric oscillator with 3.8–12.4-µm tunability , 2000 .

[16]  Kenneth L. Schepler,et al.  Kilohertz AgGaSe 2 optical parametric oscillator pumped at 2 μm , 1993 .

[17]  Umit Demirbas,et al.  Intracavity-pumped Cr2+:ZnSe laser with ultrabroad tuning range between 1880 and 3100 nm. , 2006, Optics letters.

[18]  Stephane Nicolas,et al.  Midinfrared laser source with high power and beam quality. , 2006, Applied optics.

[19]  Ian H. White,et al.  A simple device to allow enhanced bandwidths at 850 nm in multimode fibre links for gigabit LANs , 1999 .

[20]  Timothy J. Carrig,et al.  High-power, rapidly-tunable dual-band CdSe optical parametric oscillator , 2005 .

[21]  E. Sorokin,et al.  Ultrabroadband infrared solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Leon Esterowitz,et al.  Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μm , 2002 .

[23]  K. O'Hearn,et al.  2.05-/spl mu/m-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[24]  Manijeh Razeghi,et al.  High-power (?~9 m) quantum cascade lasers , 2002 .

[25]  W. J. Alford,et al.  High-Power, Rapidly-Tunable ZnGeP2 Intracavity Optical Parametric Oscillator , 2005 .

[26]  Irina T. Sorokina,et al.  Cr2+-doped II–VI materials for lasers and nonlinear optics , 2004 .

[27]  Manijeh Razeghi,et al.  Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼9.6μm , 2006 .

[28]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[29]  R. Martinelli,et al.  2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers , 1999, IEEE Photonics Technology Letters.

[30]  S. Jackson,et al.  Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 microm. , 2004, Optics letters.

[31]  Wei Zhang,et al.  High-power, continuous-operation intersubband laser for wavelengths greater than 10 μm , 2007 .

[32]  Manijeh Razeghi,et al.  Cavity-length effects of high-temperature high-power continuous-wave characteristics in quantum-cascade lasers , 2003 .

[33]  A. Vicet,et al.  Mid-Infrared 2—5 μm Heterojunction Laser Diodes , 2003 .

[34]  Klaus Petermann,et al.  Broadly Tunable Laser Emission from Tm:Y2O3 and Tm:Sc2O3 at 2µm , 2001 .

[35]  C. Sirtori,et al.  Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared , 2003 .

[36]  P B Phua,et al.  120-W continuous-wave diode-pumped Tm:YAG laser. , 2000, Optics letters.

[37]  C. Pfahler,et al.  GaSb-based tapered diode lasers at 1.93 /spl mu/m with 1.5-W nearly diffraction-limited power , 2006, IEEE Photonics Technology Letters.

[38]  Manijeh Razeghi,et al.  High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature , 2003 .

[39]  Leon Esterowitz,et al.  Efficient 1.94-/spl mu/m Tm:YALO laser , 1995 .

[40]  Timothy J. Carrig,et al.  Power scaling of Cr2+:ZnSe lasers , 2001 .

[41]  Gerald T. Moore,et al.  Optical parametric oscillation with intracavity difference-frequency mixing , 1995 .

[42]  Manijeh Razeghi,et al.  High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .

[43]  E. Sorokin,et al.  Chirped-mirror dispersion controlled femtosecond Cr:ZnSe laser , 2007 .

[44]  E. Rosencher,et al.  Mid-IR Entangled-Cavity Doubly Resonant OPO pumped by a micro-laser , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[45]  M. Razeghi,et al.  Beam steering in high-power CW quantum-cascade lasers , 2005, IEEE Journal of Quantum Electronics.

[46]  H.K. Choi,et al.  High-power GaInAsSb-AlGaAsSb multiple-quantum-well diode lasers emitting at 1.9 /spl mu/m , 1994, IEEE Photonics Technology Letters.

[47]  T. Y. Fan,et al.  Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG , 1988 .

[48]  L. Becouarn,et al.  Optical parametric oscillation in quasi-phase-matched GaAs , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[49]  E. Rosencher,et al.  Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study , 2007 .

[50]  Leonard A. Pomeranz,et al.  Efficient mid-infrared laser using 1.9-µm-pumped Ho:YAG and ZnGeP 2 optical parametric oscillators , 2000 .

[51]  Manijeh Razeghi,et al.  Quantum-cascade lasers operating in continuous-wave mode above 90°C at λ∼5.25μm , 2006 .

[52]  G. Kaufel,et al.  High-power 1.9-/spl mu/m diode laser arrays with reduced far-field angle , 2006, IEEE Photonics Technology Letters.

[53]  S. Collin,et al.  Room-temperature electroluminescence in the mid-infrared (2-3 microm) from bulk chromium-doped ZnSe. , 2006, Optics letters.

[54]  W. J. Alford,et al.  High-power, rapidly-tunable ZnGeP/sub 2/ intracavity optical parametric oscillator , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[55]  C. Alibert,et al.  Low threshold high-power room-temperature continuous-wave operation diode laser emitting at 2.26 /spl mu/m , 2004, IEEE Photonics Technology Letters.

[56]  S. E. Bisson,et al.  Long-wave IR chemical sensing based on difference frequency generation in orientation-patterned GaAs , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[57]  J. Faist,et al.  High-power room temperature emission quantum cascade lasers at /spl lambda/=9 /spl mu/m , 2005, IEEE Journal of Quantum Electronics.

[58]  Ralph H. Page,et al.  Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media , 1996 .

[59]  Peter F. Moulton,et al.  High-power, high-energy Ho:YLF laser pumped with Tm:fiber laser , 2005 .

[60]  T. Taira,et al.  High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm x 5 mm aperture. , 2005, Optics letters.

[61]  V. G. Shcherbitsky,et al.  1.9- m and 2.0- m laser diode pumping of Cr(2+) :ZnSe and Cr(2+) :CdMnTe. , 2002, Optics letters.

[62]  Wolfgang Schade,et al.  Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives , 2006 .

[63]  Hao Lee,et al.  4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes , 1997 .

[64]  H. Zappe,et al.  Widely Tunable GaSb-Based External Cavity Diode Laser Emitting Around 2.3$mu$m , 2006, IEEE Photonics Technology Letters.

[65]  U. Singh,et al.  1 J/pulse Q-switched 2 microm solid-state laser. , 2006, Optics letters.

[66]  S B Mirov,et al.  Erbium fiber laser-pumped continuous-wave microchip Cr(2+):ZnS and Cr(2+):ZnSe lasers. , 2002, Optics letters.

[67]  M. Mond,et al.  Efficient laser operation and continuous-wave diode pumping of Cr2+:ZnSe single crystals , 2001 .

[68]  R. Stoneman,et al.  Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG cw lasers. , 1990, Optics letters.

[69]  N. Coluccelli,et al.  Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation , 2006 .

[70]  Jacek Swiderski,et al.  Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. , 2004, Optics express.

[71]  Gabriel Mennerat,et al.  High-energy narrow-linewidth tunable source in the mid infrared , 1998 .

[72]  Manijeh Razeghi,et al.  Temperature dependent characteristics of λ∼3.8μm room-temperature continuous-wave quantum-cascade lasers , 2006 .

[73]  G. Belenky,et al.  High-power 2.3 [micro sign]m laser arrays emitting 10 W CW at room temperature , 2004 .

[74]  D. Hanna,et al.  High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm. , 2002, Optics letters.

[75]  V. A. Akimov,et al.  3.77-5.05-μm tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures , 2006, IEEE Journal of Quantum Electronics.

[76]  H.K. Choi,et al.  High-power high-brightness GaInAsSb-AlGaAsSb tapered laser arrays with anamorphic collimating lenses emitting at 2.05 /spl mu/m , 1999, IEEE Photonics Technology Letters.

[77]  Allen K. Hankla,et al.  Tunable infrared laser sources for DIAL , 2002, SPIE Defense + Commercial Sensing.

[78]  S. Kück,et al.  Spectroscopy and diode-pumped laser oscillation of Yb3+,Ho3+-doped yttrium scandium gallium garnet , 2000 .

[79]  Manijeh Razeghi,et al.  High-power λ∼9.5μm quantum-cascade lasers operating above room temperature in continuous-wave mode , 2006 .

[80]  S. Mirov,et al.  Mid-Infrared Electroluminescence of Cr2+ Ions in ZnSe Crystals , 2006 .

[81]  T. Taira,et al.  52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device. , 2006, Optics Letters.

[82]  George W. Turner,et al.  Ho:YAG laser pumped by 1.9-/spl mu/m diode lasers , 1995 .

[83]  Amy C. Sullivan,et al.  High power Q-switched Tm:YAlO3 lasers , 2004 .

[84]  P. Moulton,et al.  Tunable CW Er:YLF Diode-Pumped Laser , 2003 .

[85]  Peter F. Moulton,et al.  A CW side-pumped Tm:YLF laser , 2002 .

[86]  Marcella Giovannini,et al.  Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. , 2005, Optics letters.

[87]  H. Komine,et al.  Periodically Poled LiNbO3 Optical Parametric Oscillator with Intracavity Difference Frequency Mixing on a Single Crystal , 1998 .

[88]  F. Capasso,et al.  New frontiers in quantum cascade lasers and applications , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[89]  Zhidong Yao,et al.  Highly efficient high-power thulium-doped germanate glass fiber laser. , 2007, Optics letters.

[90]  L. Esterowitz,et al.  Tm(3+):YLF laser continuously tunable between 2.20 and 2.46 microm. , 1994, Optics letters.

[91]  J K Sahu,et al.  High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum. , 2006, Optics express.

[92]  Marc Eichhorn Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers. , 2007, Optics letters.

[93]  V. Pašiškevičius,et al.  ZnGeP2 parametric oscillator pumped by a linewidth-narrowed parametric 2 microm source. , 2006, Optics letters.

[94]  I. Vurgaftman,et al.  Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers , 2006 .

[95]  Evgeni Sorokin,et al.  Tunable efficient continuous-wave room-temperature Tm3+:GdVO4 laser , 2002 .

[96]  Manijeh Razeghi,et al.  Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature , 2004 .

[97]  Ramon U. Martinelli,et al.  Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves , 2002 .

[98]  H.K. Choi,et al.  GaInAsSb-AlGaAsSb tapered lasers emitting at 2.05 μm with 0.6-W diffraction-limited power , 1998, IEEE Photonics Technology Letters.

[99]  Mid-infrared high-resolution absorption spectroscopy by use of a semimonolithic entangled-cavity optical parametric oscillator. , 2004, Optics letters.

[100]  D M Rines,et al.  Tunable 7 12-microm optical parametric oscillator using a Cr,Er:YSGG laser to pump CdSe and ZnGeP(2) crystals. , 1997, Optics letters.

[101]  F. Massman,et al.  Diode Pumped, Q-Switched Erbium Lasers with Short Pulse Duration , 1997 .