Application of particle swarm optimization in chaos synchronization in noisy environment in presence of unknown parameter uncertainty

Abstract In this paper, particle swarm optimization (PSO) is applied to synchronize chaotic systems in presence of parameter uncertainties and measurement noise. Particle swarm optimization is an evolutionary algorithm which is introduced by Kennedy and Eberhart. This algorithm is inspired by birds flocking. Optimization algorithms can be applied to control by defining an appropriate cost function that guarantees stability of system. In presence of environment noise and parameter uncertainty, robustness plays a crucial role in succeed of controller. Since PSO needs only rudimentary information about the system, it can be a suitable algorithm for this case. Simulation results confirm that the proposed controller can handle the uncertainty and environment noise without any extra information about them. A comparison with some earlier works is performed during simulations.

[1]  S. Ge,et al.  Adaptive synchronization of uncertain chaotic systems via backstepping design , 2001 .

[2]  Yan Xu,et al.  Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control , 2010 .

[3]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[4]  Jun-Juh Yan,et al.  Adaptive synchronization for two identical generalized Lorenz chaotic systems via a single controller , 2009 .

[5]  W. Chang PID control for chaotic synchronization using particle swarm optimization , 2009 .

[6]  Er-Wei Bai,et al.  Sequential synchronization of two Lorenz systems using active control , 2000 .

[7]  Guanrong Chen,et al.  On feedback control of chaotic continuous-time systems , 1993 .

[8]  Chongzhao Han,et al.  Modification for synchronization of Rossler and Chen chaotic systems , 2002 .

[9]  Yao-Chen Hung,et al.  Synchronization of two different systems by using generalized active control , 2002 .

[10]  H. Salarieh,et al.  Adaptive synchronization of two chaotic systems with stochastic unknown parameters , 2009 .

[11]  Er-Wei Bai,et al.  Synchronization and Control of Chaotic Systems , 1999 .

[12]  Tomasz Kapitaniak,et al.  Continuous control and synchronization in chaotic systems , 1995 .

[13]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[14]  K.Murali,et al.  Secure communication using a compound signal from generalized synchronizable chaotic systems , 1997, chao-dyn/9709025.

[15]  H. Salarieh,et al.  Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control , 2008 .

[16]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[17]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[18]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[19]  Punit Parmananda,et al.  Synchronization using linear and nonlinear feedbacks: a comparison , 1998 .

[20]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[21]  Jinhu Lu,et al.  Parameters identification and synchronization of chaotic systems based upon adaptive control , 2002 .

[22]  O. Weck,et al.  A COMPARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM , 2005 .

[23]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[24]  P. Fourie,et al.  The particle swarm optimization algorithm in size and shape optimization , 2002 .

[25]  Ming-Chung Ho,et al.  Phase and anti-phase synchronization of two chaotic systems by using active control , 2002 .

[26]  Aria Alasty,et al.  Synchronization of chaotic systems with parameter uncertainties via variable structure control , 2006 .

[27]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[28]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[29]  Wenlin Li,et al.  Adaptive synchronization for a unified chaotic system with uncertainty , 2010 .

[30]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[31]  Leon O. Chua,et al.  TRANSITIONS IN DYNAMICAL REGIMES BY DRIVING: A UNIFIED METHOD OF CONTROL AND SYNCHRONIZATION OF CHAOS , 1993 .

[32]  Guanrong Chen,et al.  SYNCHRONIZATION STABILITY ANALYSIS OF THE CHAOTIC RÖSSLER SYSTEM , 1996 .

[33]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[34]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  José Manoel Balthazar,et al.  On control and synchronization in chaotic and hyperchaotic systems via linear feedback control , 2008 .

[36]  Mehdi Behzad,et al.  Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control , 2008 .

[37]  Elena Panteley,et al.  Control of the chaotic Duffing equation with uncertainty in all parameters , 1998 .

[38]  Manuel A. Matías,et al.  Control of chaos in unidimensional maps , 1993 .

[39]  Xiaohui Hu,et al.  Engineering optimization with particle swarm , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[40]  Hassan Salarieh,et al.  Adaptive chaos synchronization in Chua's systems with noisy parameters , 2008, Math. Comput. Simul..

[41]  Xiaowu Mu,et al.  Synchronization of the near-identical chaotic systems with the unknown parameters , 2010 .