Calculation of homoclinic and heteroclinic orbits in 1D maps
暂无分享,去创建一个
[1] Michael Schanz,et al. Critical homoclinic orbits lead to snap-back repellers , 2011 .
[2] Soumitro Banerjee,et al. Robust Chaos , 1998, chao-dyn/9803001.
[3] Laura Gardini,et al. Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .
[4] J. Yorke,et al. CHAOTIC ATTRACTORS IN CRISIS , 1982 .
[5] J. Yorke,et al. Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .
[6] Christian Mira,et al. ON BEHAVIORS OF TWO-DIMENSIONAL ENDOMORPHISMS: ROLE OF THE CRITICAL CURVES , 1993 .
[7] Iryna Sushko,et al. A Gallery of Bifurcation Scenarios in Piecewise Smooth 1D Maps , 2013 .
[8] Grebogi,et al. Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.
[9] Michael Schanz,et al. Bandcount incrementing scenario revisited and floating regions within robust chaos , 2014, Math. Comput. Simul..
[10] Michael Schanz,et al. On the fully developed bandcount adding scenario , 2008 .
[11] F. R. Marotto. Snap-back repellers imply chaos in Rn , 1978 .
[12] Christian Mira,et al. Chaotic Dynamics in Two-Dimensional Noninvertible Maps , 1996 .
[13] F. R. Marotto. On redefining a snap-back repeller , 2005 .
[14] Michael Schanz,et al. Bifurcations of Chaotic Attractors in One-Dimensional Piecewise Smooth Maps , 2014, Int. J. Bifurc. Chaos.