Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures

We present a model for the interplay between the fundamental phenomena responsible for the formation of nanostructures by metalorganic vapor phase epitaxy on patterned (001)/(111)B GaAs substrates. Experiments have demonstrated that V-groove quantum wires and pyramidal quantum dots form as a consequence of a self-limiting profile that develops, respectively, at the bottom of V-grooves and inverted pyramids. Our model is based on a system of reaction-diffusion equations, one for each crystallographic facet that defines the pattern, and include the group III precursors, their decomposition and diffusion kinetics (for which we discuss the experimental evidence), and the subsequent diffusion and incorporation kinetics of the group-III atoms released by the precursors. This approach can be applied to any facet configuration, including pyramidal quantum dots, but we focus on the particular case of V-groove templates and offer an explanation for the self-limited profile and the Ga segregation observed in the V-groove. The explicit inclusion of the precursor decomposition kinetics and the diffusion of the atomic species revises and generalizes the earlier work of Biasiol et al. [Biasiol et al., Phys.Rev. Lett. 81, 2962 (1998); Phys. Rev. B 65, 205306 (2002)] and is shown to be essential for obtaining a complete description of self-limiting growth. The solution of the system of equations yields spatially resolved adatom concentrations, from which average facet growth rates are calculated. This provides the basis for determining the conditions that yield self-limiting growth. The foregoing scenario, previously used to account for the growth modes of vicinal GaAs(001) and the step-edge profiles on the ridges of vicinal surfaces patterned with V-grooves during metalorganic vapor-phase epitaxy, can be used to describe the morphological evolution of any template composed of distinct facets.

[1]  J. Faist,et al.  Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. , 2010, Small.

[2]  L. Mereni,et al.  A site-controlled quantum dot system offering both high uniformity and spectral purity , 2009, 0906.4066.

[3]  J. Faist,et al.  Retraction Note: Polarization-entangled photons produced with high-symmetry site-controlled quantum dots , 2009, Nature Photonics.

[4]  A. Rudra,et al.  Theory and experiment of step bunching on misoriented GaAs(001) during metalorganic vapor-phase epitaxy , 2008 .

[5]  E. Kapon,et al.  Narrow (≈4meV) inhomogeneous broadening and its correlation with confinement potential of pyramidal quantum dot arrays , 2007 .

[6]  E. Kapon,et al.  Mechanisms of quantum dot energy engineering by metalorganic vapor phase epitaxy on patterned nonplanar substrates. , 2007, Nano letters.

[7]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[8]  Xue-Lun Wang,et al.  Epitaxial growth and optical properties of semiconductor quantum wires , 2006 .

[9]  E. Kapon,et al.  Alloy Segregation, Quantum Confinement and Carrier Capture in Self-Ordered Pyramidal Quantum Wires , 2006 .

[10]  Y. Oreg,et al.  Luttinger-liquid behavior in weakly disordered quantum wires. , 2005, Physical review letters.

[11]  D. Bouwmeester,et al.  Photon statistics from coupled quantum dots. , 2005, Physical review letters.

[12]  Hideki Hasegawa,et al.  Growth kinetics and theoretical modeling of selective molecular beam epitaxy for growth of GaAs nanowires on nonplanar (001) and (111)B substrates , 2005 .

[13]  Shinichi Watanabe,et al.  Patterning of confined-state energies in site-controlled semiconductor quantum dots , 2005 .

[14]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[15]  T. Sugaya,et al.  Enhanced peak-to-valley current ratio in InGaAs/InAlAs trench-type quantum-wire negative differential resistance field-effect transistors , 2005 .

[16]  G. Kar,et al.  Material distribution across the interface of random and ordered island arrays. , 2004, Physical review letters.

[17]  K. Asano,et al.  Theoretical investigations of adatom behavior on non-planar surfaces with GaAs(n 1 1)A , 2004 .

[18]  H. Hasegawa,et al.  Growth kinetics and modeling of selective molecular beam epitaxial growth of GaAs ridge quantum wires on pre-patterned nonplanar substrates , 2004 .

[19]  E. Kapon,et al.  Site-controlled quantum dots grown in inverted pyramids for photonic crystal applications , 2004 .

[20]  E. Kapon,et al.  Dense uniform arrays of site-controlled quantum dots grown in inverted pyramids , 2004 .

[21]  Xavier Marcadet,et al.  Intracavity sum-frequency generation in GaAs quantum cascade lasers , 2004 .

[22]  E. Kapon,et al.  Electroluminescence from a Single Pyramidal Quantum Dot in a Light-Emitting Diode , 2004 .

[23]  Shinichi Watanabe,et al.  High Uniformity of Site-Controlled Pyramidal Quantum Dots Grown on Prepatterned Substrates , 2004 .

[24]  E. Kapon,et al.  Growth and optical characterization of dense arrays of site-controlled quantum dots grown in inverted pyramids , 2004 .

[25]  E. Kapon,et al.  Single-Photon Emission from Site-Controlled Pyramidal Quantum Dots , 2004 .

[26]  Shinji Watanabe,et al.  High‐quality InxGa1–xAs/Al0.30Ga0.70As quantum dots grown in inverted pyramids , 2003 .

[27]  E. Kapon,et al.  Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures , 2002 .

[28]  T. Schäpers,et al.  On the choice of precursors for the MOVPE-growth of high-quality Al0.30Ga0.70As/GaAs v-groove quantum wires with large subband spacing , 2000 .

[29]  G. Bauer,et al.  Nearly perfect 3D ordering in IV–VI quantum dot superlattices with ABCABC... vertical stacking sequence , 2000 .

[30]  L. Sirigu,et al.  Excitonic Lasing in Semiconductor Quantum Wires , 1999, cond-mat/9912009.

[31]  E. Kapon,et al.  Effect of indium segregation on optical properties of V-groove InGaAs/GaAs strained quantum wires , 1999 .

[32]  E. Kapon,et al.  Conductance Quantization in V-Groove Quantum Wires , 1999 .

[33]  A. Rudra,et al.  Self-ordered nanostructures grown by organometallic chemical vapor deposition on V-grooved substrates: experiments and Monte-Carlo simulations , 1999 .

[34]  E. Kapon,et al.  Structure and Photoluminescence of Single AlGaAs/GaAs Quantum Dots Grown in Inverted Tetrahedral Pyramids , 1998 .

[35]  E. Kapon,et al.  Mechanisms of Self-Ordering of Quantum Nanostructures Grown on Nonplanar Surfaces , 1998 .

[36]  M. Alouani,et al.  AB INITIO CALCULATION OF BINDING AND DIFFUSION OF A GA ADATOM ON THE GAAS (001)-C(4X4) SURFACE , 1998 .

[37]  N. Kobayashi,et al.  Formation of a 100-µm-wide Stepfree GaAs (111)B Surface Obtained by Finite Area Metalorganic Vapor Phase Epitaxy , 1998 .

[38]  M. Scheffler,et al.  Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction , 1997, cond-mat/9710180.

[39]  E. Kapon,et al.  Self Limiting Growth of Quantum Dot Heterostructures on Nonplanar {111}B Substrates , 1997 .

[40]  Y. Shiraki,et al.  Metalorganic Vapor Phase Eitaxy Growth Features of AlGaAs in Tetrahedral-Shaped Recesses on GaAs (111)B Substrates , 1997 .

[41]  Dimitri D. Vvedensky,et al.  Math professor turns classroom program into successful business , 1995 .

[42]  Clarke,et al.  Surface dissociation from first principles: Dynamics and chemistry. , 1994, Physical review. B, Condensed matter.

[43]  D. Vvedensky,et al.  Precursor‐mediated epitaxial growth of GaAs(001) from triethylgallium: Where is the gallium released? , 1993 .

[44]  D. Vvedensky,et al.  Epitaxial growth kinetics on patterned substrates , 1993 .

[45]  A. Zangwill,et al.  Theory of epitaxial growth onto nonplanar substrates , 1992 .

[46]  T. Isu,et al.  Surface diffusion length observed by in situ scanning microprobe reflection high-energy electron diffraction , 1991 .

[47]  K. Lau,et al.  Patterned substrate epitaxy surface shapes , 1991 .

[48]  Y. Katayama,et al.  Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high‐energy electron diffraction , 1990 .

[49]  R. Blondeau,et al.  A study of the orientation dependence of Ga(Al)As growth by MOVPE , 1986 .

[50]  N. M. Cho,et al.  Optimal surface and growth front of III–V semiconductors in molecular beam epitaxy: A study of kinetic processes via reflection high energy electron diffraction specular beam intensity measurements on GaAs(100) , 1986 .

[51]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[52]  R. Zimmermann,et al.  Monte Carlo growth simulation for AlxGa1−xAs heteroepitaxy , 2000 .

[53]  Andreas Schlachetzki,et al.  Diffusion during metalorganic vapor-phase epitaxy on V-groove patterned substrates , 1999 .

[54]  T. Fukui,et al.  Step-flow growth and fractional-layer superlattices on ()B GaAs vicinal surfaces , 1991 .