Balance Resource Utilization (BRU) Approach for the Dynamic Load Balancing in Cloud Environment by Using AR Prediction Model

Oneofthemajorchallengesforthecloudprovideristheefficientutilizationofthephysicalresources. Toachievethis,thispaperproposedaBalanceResourceUtilization(BRU)approachthatnotonly minimizestheresourceleakagebutalsoincreasestheresourceutilizationandoptimizethesystem performance.Theproposedapproachconsider tworesources i.e.,CPUandmemory,asdecision metrics for loadbalancinganduse three thresholdsnamed lower threshold,upper thresholdand warningthresholdtodefineunderloaded,overloadedandwarningsituations,respectively.Themain conceptof thisapproach is toplaceVMto thePM,whereresourcerequirementof theVMand resourceutilizationofthePMarecomplementstoeachother.Toevadeunnecessarymigrationsdue tothetemporarypeakloadARtimeseriespredictionmodelisused.Theauthors’approachtreatsload balancingproblemfromthepracticalperspectiveandimplementedinOpenStackcloudwithKVM hypervisor.Moreover,proposedapproachresolvetheissueofVMmigrationintheheterogeneous environment. KEywORDS Auto Regression (AR) Model, CPU Load, CPU Utilization, Energy Efficient, Response Time, Virtual Machine, Warning Threshold

[1]  Karim Djemame,et al.  Energy-Aware Profiling for Cloud Computing Environments , 2015, Electron. Notes Theor. Comput. Sci..

[2]  Adrian Ramirez-Nafarrate,et al.  Agent-based load balancing in Cloud data centers , 2015 .

[3]  Peter A. Dinda,et al.  Host load prediction using linear models , 2000, Cluster Computing.

[4]  Paul Honeine,et al.  Prediction of time series using Yule-Walker equations with kernels , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Emmanuel Ahene,et al.  A Multi-objective Optimization Approach to Workflow Scheduling in Clouds Considering Fault Recovery , 2016, KSII Trans. Internet Inf. Syst..

[6]  Zhuzhong Qian,et al.  Balancing Resource Utilization for Continuous Virtual Machine Requests in Clouds , 2012, 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.

[7]  Leandro Navarro,et al.  A summary of virtualization techniques , 2012 .

[8]  Yoshihiro Yajima,et al.  On an autoregressive model with time-dependent coefficients , 1986 .

[9]  Jesús Carretero,et al.  Introduction to cloud computing: platforms and solutions , 2014, Cluster Computing.

[10]  Jibi Abraham,et al.  A Threshold Band Based Model for Automatic Load Balancing in Cloud Environment , 2013, 2013 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM).

[11]  Wenzhi Chen,et al.  Smart-DRS: A Strategy of Dynamic Resource Scheduling in Cloud Data Center , 2012, 2012 IEEE International Conference on Cluster Computing Workshops.

[12]  Anirudha Sahoo,et al.  On Theory of VM Placement: Anomalies in Existing Methodologies and Their Mitigation Using a Novel Vector Based Approach , 2011, 2011 IEEE 4th International Conference on Cloud Computing.

[13]  Flavio Esposito,et al.  Optimizing Live Migration of Multiple Virtual Machines , 2018, IEEE Transactions on Cloud Computing.

[14]  Cristian Mateos,et al.  Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006) , 2015, Adv. Eng. Softw..

[15]  Erik Elmroth,et al.  Control-Based Load-Balancing Techniques: Analysis and Performance Evaluation via a Randomized Optimization Approach , 2016 .

[16]  Stefan Wind,et al.  Open source cloud computing management platforms: Introduction, comparison, and recommendations for implementation , 2011, 2011 IEEE Conference on Open Systems.

[17]  Hatem M. El-Boghdadi On the computational power of WECPAR , 2014, The Journal of Supercomputing.

[18]  Utpal Biswas,et al.  Development and Analysis of a New Cloudlet Allocation Strategy for QoS Improvement in Cloud , 2015 .

[19]  Zhen Xiao,et al.  Dynamic Resource Allocation Using Virtual Machines for Cloud Computing Environment , 2013, IEEE Transactions on Parallel and Distributed Systems.

[20]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[21]  Rajkumar Buyya,et al.  Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers , 2012, Concurr. Comput. Pract. Exp..

[22]  Antonio Corradi,et al.  VM consolidation: A real case based on OpenStack Cloud , 2014, Future Gener. Comput. Syst..

[23]  Wenhong Tian,et al.  Energy Efficiency Scheduling in Hadoop , 2015 .

[24]  Feng Xia,et al.  Virtual machine migration in cloud data centers: a review, taxonomy, and open research issues , 2015, The Journal of Supercomputing.

[25]  Rajkumar Buyya,et al.  Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing , 2012, Future Gener. Comput. Syst..

[26]  M. S. Saleem Basha,et al.  A novel algorithm for reducing energy-consumption in cloud computing environment: Web service computing approach , 2016, J. King Saud Univ. Comput. Inf. Sci..

[27]  Marek Tudruj,et al.  Extremal Optimization applied to load balancing in execution of distributed programs , 2015, Appl. Soft Comput..

[28]  Nima Jafari Navimipour,et al.  Load balancing mechanisms and techniques in the cloud environments: Systematic literature review and future trends , 2016, J. Netw. Comput. Appl..

[29]  Geoffrey C. Fox,et al.  Analysis of Virtualization Technologies for High Performance Computing Environments , 2011, 2011 IEEE 4th International Conference on Cloud Computing.

[30]  Yanbing Liu,et al.  A Virtual Machine Migration Strategy Based on Time Series Workload Prediction Using Cloud Model , 2014 .