Influence of the strain on the formation of GaInAs/GaAs quantum structures
暂无分享,去创建一个
Johann Peter Reithmaier | Alfred Forchel | Andreas Löffler | Andres Sauerwald | Tilmar Kümmell | Gerd Bacher | A. Forchel | J. Reithmaier | G. Bacher | A. Löffler | T. Kümmell | Dennis Peskes | A. Sauerwald | D. Peskes
[1] S. Mikhrin,et al. Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate , 1999, IEEE Photonics Technology Letters.
[2] R Richard Nötzel,et al. Formation of InAs quantum dot arrays on GaAs (100) by self-organized anisotropic strain engineering of a (In,Ga)As superlattice template , 2002 .
[3] Marc Ilegems,et al. Matrix effects on the structural and optical properties of InAs quantum dots , 2001 .
[4] R. Nötzel,et al. Self-organized quantum wires formed by elongated dislocation-free islands in (In,Ga)As/GaAs(100) , 2001 .
[5] V. Kulakovskii,et al. Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.
[6] Mats-Erik Pistol,et al. Single quantum dots emit single photons at a time: Antibunching experiments , 2001 .
[7] A. Fiore,et al. High-efficiency light-emitting diodes at /spl ap/1.3 /spl mu/m using InAs-InGaAs quantum dots , 2000, IEEE Photonics Technology Letters.
[8] Hansen,et al. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. , 1994, Physical review letters.
[9] S. Thainoi,et al. Self-assembled quantum-dot molecules by molecular-beam epitaxy , 2005 .
[10] D. Gerthsen,et al. Structural transformations and strain relaxation mechanisms of In0.6Ga0.4As islands grown by molecular beam epitaxy on GaAs(001) substrates , 1995 .
[11] R. Nötzel,et al. Effect of annealing on formation of self-assembled (In,Ga)As quantum wires on GaAs (100) by molecular beam epitaxy , 2002 .
[12] Nikolai N. Ledentsov,et al. Quantum dot heterostructures , 1999 .
[13] O. W. Holland,et al. Formation of ultrathin, buried oxides in Si by O+ ion implantation , 1996 .
[14] D. Deppe,et al. 1.3 μm room-temperature GaAs-based quantum-dot laser , 1998 .
[15] Ricardo Garcia,et al. Transition from self‐organized InSb quantum‐dots to quantum dashes , 1996 .
[16] R. Nötzel,et al. Direct imaging of self-organized anisotropic strain engineering for improved one-dimensional ordering of (In,Ga)As quantum dot arrays , 2004 .
[17] M. Asada,et al. Gain and the threshold of three-dimensional quantum-box lasers , 1986 .
[18] R. Nötzel,et al. Shape transition of coherent three-dimensional (In,Ga)As islands on GaAs(100) , 2001 .
[19] A. Forchel,et al. STEM-study of 1.3 μm InAs/InGaAs quantum dot structures , 2005 .
[20] Peter Michler,et al. Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.
[21] Nikolai N. Ledentsov,et al. 1.3 [micro sign]m GaAs-based laser using quantum dots obtained by activated spinodal decomposition , 1999 .
[22] Diana L. Huffaker,et al. Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots , 1998 .
[23] Tersoff,et al. Shape transition in growth of strained islands: Spontaneous formation of quantum wires. , 1993, Physical review letters.
[24] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .
[25] S. Brongersma,et al. STRESS-INDUCED SHAPE TRANSITION OF COSI2 CLUSTERS ON SI(100) , 1998 .
[26] A. Stintz,et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.