Determination of the Genome and Primary Transcriptome of Syngas Fermenting Eubacterium limosum ATCC 8486

[1]  anonymous,et al.  Comprehensive review , 2019 .

[2]  Byung-Kwan Cho,et al.  Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria , 2016, Front. Microbiol..

[3]  Min Woo Kim,et al.  The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2) , 2016, Nature Communications.

[4]  Dong Li,et al.  The complete genome sequence of Eubacterium limosum SA11, a metabolically versatile rumen acetogen , 2016, Standards in genomic sciences.

[5]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[6]  Lake-Ee Quek,et al.  Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen , 2016 .

[7]  Davide Heller,et al.  eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences , 2015, Nucleic Acids Res..

[8]  Byung-Kwan Cho,et al.  Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species. , 2015, Journal of microbiology and biotechnology.

[9]  P. Dürre,et al.  The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens , 2015, mBio.

[10]  I. Choi,et al.  Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, Eubacterium limosum KIST612 , 2015, Applied and Environmental Microbiology.

[11]  Byung-Kwan Cho,et al.  Draft Genome Sequence of Chemolithoautotrophic Acetogenic Butanol-Producing Eubacterium limosum ATCC 8486 , 2015, Genome Announcements.

[12]  Robert D. Finn,et al.  Rfam 12.0: updates to the RNA families database , 2014, Nucleic Acids Res..

[13]  V. Müller,et al.  Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria , 2014, Nature Reviews Microbiology.

[14]  Jörg Vogel,et al.  Differential RNA-seq: the approach behind and the biological insight gained. , 2014, Current opinion in microbiology.

[15]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[16]  L. Mamanova,et al.  A combination of improved differential and global RNA-seq reveals pervasive transcription initiation and events in all stages of the life-cycle of functional RNAs in Propionibacterium acnes, a major contributor to wide-spread human disease , 2013, BMC Genomics.

[17]  Peter Dürre,et al.  Bacterial synthesis gas (syngas) fermentation , 2013, Environmental technology.

[18]  B. Spigarelli,et al.  Opportunities and challenges in carbon dioxide capture , 2013 .

[19]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[20]  B. Palsson,et al.  Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site Profiling , 2012, PLoS genetics.

[21]  Derek W. Griffin,et al.  Fuel and chemical products from biomass syngas: A comparison of gas fermentation to thermochemical conversion routes , 2012 .

[22]  M. Schatz,et al.  Hybrid error correction and de novo assembly of single-molecule sequencing reads , 2012, Nature Biotechnology.

[23]  M. Hecker,et al.  An Ancient Pathway Combining Carbon Dioxide Fixation with the Generation and Utilization of a Sodium Ion Gradient for ATP Synthesis , 2012, PloS one.

[24]  Huaiqiu Zhu,et al.  Gene prediction in metagenomic fragments based on the SVM algorithm , 2011, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI).

[25]  Jun Yu,et al.  PGAP: pan-genomes analysis pipeline , 2011, Bioinform..

[26]  B. Kräutler,et al.  Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. , 2011, Chemical Society reviews.

[27]  C. Rodrigues-Pousada,et al.  Tungsten and Molybdenum Regulation of Formate Dehydrogenase Expression in Desulfovibrio vulgaris Hildenborough , 2011, Journal of bacteriology.

[28]  Hanseong Roh,et al.  Complete Genome Sequence of a Carbon Monoxide-Utilizing Acetogen, Eubacterium limosum KIST612 , 2010, Journal of bacteriology.

[29]  P. Dürre,et al.  Clostridium ljungdahlii represents a microbial production platform based on syngas , 2010, Proceedings of the National Academy of Sciences.

[30]  Kristin Reiche,et al.  The primary transcriptome of the major human pathogen Helicobacter pylori , 2010, Nature.

[31]  Prasant Kumar Rout,et al.  Production of first and second generation biofuels: A comprehensive review , 2010 .

[32]  Karsten Zengler,et al.  The transcription unit architecture of the Escherichia coli genome , 2009, Nature Biotechnology.

[33]  Pavel Tomancak,et al.  Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome , 2009, Genome Biology.

[34]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[35]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[36]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[37]  W. L. Ruzzo,et al.  A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism , 2008, Molecular microbiology.

[38]  Volker Müller,et al.  Discovery of a Ferredoxin:NAD+‐Oxidoreductase (Rnf) in Acetobacterium woodii , 2008, Annals of the New York Academy of Sciences.

[39]  S. Ragsdale Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis , 2008, Annals of the New York Academy of Sciences.

[40]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[41]  R. Graham,et al.  Microbial proteomics: a mass spectrometry primer for biologists , 2007, Microbial cell factories.

[42]  A. Stams,et al.  Microbiology of synthesis gas fermentation for biofuel production. , 2007, Current opinion in biotechnology.

[43]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[44]  G. Du,et al.  5′ end cDNA amplification using classic RACE , 2006, Nature Protocols.

[45]  M. Bartlett Determinants of transcription initiation by archaeal RNA polymerase. , 2005, Current opinion in microbiology.

[46]  D. Menick,et al.  Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5'-untranslated region of mRNA. , 2004, The Biochemical journal.

[47]  C. Gross,et al.  Multiple sigma subunits and the partitioning of bacterial transcription space. , 2003, Annual review of microbiology.

[48]  Margaret S. Ebert,et al.  An mRNA structure in bacteria that controls gene expression by binding lysine. , 2003, Genes & development.

[49]  M. Gelfand,et al.  Comparative Genomics of the Vitamin B12 Metabolism and Regulation in Prokaryotes* , 2003, Journal of Biological Chemistry.

[50]  Andrey A Mironov,et al.  Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. , 2003, RNA.

[51]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[52]  H. Hur,et al.  Biotransformation of the isoflavonoids biochanin A, formononetin, and glycitein by Eubacterium limosum. , 2000, FEMS microbiology letters.

[53]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[54]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[55]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[56]  M. Pátek,et al.  Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. , 1996, Microbiology.

[57]  M. Hecker,et al.  Heat‐shock and general stress response in Bacillus subtilis , 1996, Molecular microbiology.

[58]  J. D. Helmann,et al.  Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA , 1995, Nucleic Acids Res..

[59]  M Bjerknes,et al.  Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. , 1994, Nucleic acids research.

[60]  A. Stams,et al.  Effect of tungsten and molybdenum on growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum hungatei , 2008, Archives of Microbiology.

[61]  A. Ishihama Functional modulation of Escherichia coli RNA polymerase. , 2000, Annual review of microbiology.

[62]  R. Worden,et al.  Reactor Design Issues for Synthesis‐Gas Fermentations , 1999, Biotechnology progress.

[63]  A. W. van der Velden,et al.  The role of the 5' untranslated region of an mRNA in translation regulation during development. , 1999, The international journal of biochemistry & cell biology.