CMB power spectrum estimation using wavelets

Observations of the cosmic microwave background (CMB) provide increasingly accurate information about the structure of the Universe at the recombination epoch. Most of this information is encoded in the angular power spectrum of the CMB. The aim of this work is to propose a versatile and powerful method for spectral estimation on the sphere which can easily deal with nonstationary uncorrelated noise and multiple experiments with various specifications. In this paper, we use needlets (wavelets) on the sphere to construct natural and efficient spectral estimators for partially observed and beamed CMB with nonstationary noise. In the case of a single experiment, we compare this method with pseudo-C{sub l} methods. The performance of the needlet spectral estimators (NSE) compares very favorably to the best pseudo-C{sub l} estimators, over the whole multipole range. On simulations with a simple model (CMB+uncorrelated noise with known variance per pixel+mask), they perform uniformly better. Their distinctive ability to aggregate many different experiments, to control the propagation of errors, and to produce a single wideband error bar is highlighted. The needlet spectral estimator is a powerful, tunable tool which is very well suited to the angular power spectrum estimation of spherical data such as incomplete and noisymore » CMB maps.« less

[1]  G. Fay,et al.  Consistency of a needlet spectral estimator on the sphere , 2008, 0807.2162.

[2]  M. Halpern,et al.  Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: temperature analysis , 2006 .

[3]  Fr'ed'eric Guilloux,et al.  Practical wavelet design on the sphere , 2007, 0706.2598.

[4]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[5]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[6]  H. K. Eriksen,et al.  Power Spectrum Estimation from High-Resolution Maps by Gibbs Sampling , 2004 .

[7]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[8]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[9]  Frederik J. Simons,et al.  Minimum-Variance Multitaper Spectral Estimation on the Sphere , 2007, 1306.3254.

[10]  H. Pollak,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .

[11]  B. Wandelt,et al.  Evidence of primordial non-Gaussianity (fNL) in the Wilkinson microwave anisotropy probe 3-year data at 2.8sigma. , 2008, Physical review letters.

[12]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[13]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[14]  Paolo Baldi,et al.  High frequency asymptotics for wavelet-based tests for Gaussianity and isotropy on the torus , 2006 .

[15]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[16]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[17]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[18]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[19]  P. Baldi,et al.  Subsampling needlet coefficients on the sphere , 2007, 0706.4169.

[20]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[21]  Unbiased estimation of an angular power spectrum , 2004, astro-ph/0402428.

[22]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[23]  P. A. R. Ade,et al.  ACBAR: The Arcminute Cosmology Bolometer Array Receiver , 2003 .

[24]  Mark A. Wieczorek,et al.  Spatiospectral Concentration on a Sphere , 2004, SIAM Rev..

[25]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[26]  S Masi,et al.  Instrument, Method, Brightness and Polarization Maps from the 2003 flight of BOOMERanG , 2005, astro-ph/0507509.

[27]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[28]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[29]  R. B. Barreiro,et al.  Component separation methods for the PLANCK mission , 2008, 0805.0269.

[30]  Azita Mayeli Asymptotic Uncorrelation for Mexican Needlets , 2008 .

[31]  Benjamin D. Wandelt,et al.  Global, Exact Cosmic Microwave Background Data Analysis Using Gibbs Sampling , 2004 .

[32]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[33]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[34]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. I. Theory , 1973 .

[35]  F. Simons,et al.  Spectral estimation on a sphere in geophysics and cosmology , 2007, 0705.3083.