Isogeometric spectral approximation for elliptic differential operators

We study the spectral approximation of a second-order elliptic differential eigenvalue problem that arises from structural vibration problems using isogeometric analysis. In this paper, we generalize recent work in this direction. We present optimally blended quadrature rules for the isogeometric spectral approximation of a diffusion-reaction operator with both Dirichlet and Neumann boundary conditions. The blended rules improve the accuracy and the robustness of the isogeometric approximation. In particular, the optimal blending rules minimize the dispersion error and lead to two extra orders of super-convergence in the eigenvalue error. Various numerical examples (including the Schr$\ddot{\text{o}}$dinger operator for quantum mechanics) in one and three spatial dimensions demonstrate the performance of the blended rules.

[1]  A. Buffa,et al.  Discontinuous Galerkin approximation of the Laplace eigenproblem , 2006 .

[2]  Quanling Deng,et al.  Dispersion-minimizing quadrature rules for C1 quadratic isogeometric analysis , 2017, 1705.03103.

[3]  Victor M. Calo,et al.  Gauss-Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis , 2016, Comput. Aided Des..

[4]  Construction of exact solutions to eigenvalue problems by the asymptotic iteration method , 2004, math-ph/0412030.

[5]  F. Li,et al.  Spectral approximations by the HDG method , 2012, Math. Comput..

[6]  Quanling Deng,et al.  Spectral approximation properties of isogeometric analysis with variable continuity , 2017, Computer Methods in Applied Mechanics and Engineering.

[7]  J. Osborn Spectral approximation for compact operators , 1975 .

[8]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[9]  J. Rappaz,et al.  Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods , 1978 .

[10]  C. Canuto,et al.  Eigenvalue approximations by mixed methods , 1978 .

[11]  Lawrence F. Shampine,et al.  Initial value problems , 2007, Scholarpedia.

[12]  Victor M. Calo,et al.  Fast isogeometric solvers for explicit dynamics , 2014 .

[13]  Mark Ainsworth,et al.  Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration , 2010, SIAM J. Numer. Anal..

[14]  Uday Banerjee,et al.  A note on the effect of numerical quadrature in finite element eigenvalue approximation , 1992 .

[15]  Quanling Deng,et al.  Dispersion-minimized mass for isogeometric analysis , 2017, Computer Methods in Applied Mechanics and Engineering.

[16]  Victor M. Calo,et al.  Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis , 2016 .

[17]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[18]  Victor M. Calo,et al.  Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines , 2016, J. Comput. Appl. Math..

[19]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[20]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[21]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[22]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[23]  John E. Osborn,et al.  Estimation of the effect of numerical integration in finite element eigenvalue approximation , 1989 .

[24]  Stefano Giani,et al.  hp-Adaptive composite discontinuous Galerkin methods for elliptic eigenvalue problems on complicated domains , 2015, Appl. Math. Comput..

[25]  Victor M. Calo,et al.  Dispersion optimized quadratures for isogeometric analysis , 2017, J. Comput. Appl. Math..

[26]  Hung Nguyen-Xuan,et al.  An isogeometric analysis for elliptic homogenization problems , 2013, Comput. Math. Appl..

[27]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[28]  F. Chatelin Spectral approximation of linear operators , 2011 .

[29]  Victor M. Calo,et al.  Quadrature blending for isogeometric analysis , 2017, ICCS.

[30]  Analysis of numerical integration in p-version finite element eigenvalue approximation , 1992 .

[31]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  Victor M. Calo,et al.  Dispersion-optimized quadrature rules for isogeometric analysis: modified inner products, their dispersion properties, and optimally blended schemes , 2016, ArXiv.

[34]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[35]  Victor M. Calo,et al.  Spectral approximation of elliptic operators by the Hybrid High-Order method , 2017, Math. Comput..

[36]  I. Boztosun,et al.  asymptotic iteration method , 2007 .

[37]  V. Calo,et al.  Generalization of the Pythagorean Eigenvalue Error Theorem and Its Application to Isogeometric Analysis , 2018 .

[38]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .