The Brauer Category and Invariant Theory
暂无分享,去创建一个
[1] David N. Yetter,et al. Braided Compact Closed Categories with Applications to Low Dimensional Topology , 1989 .
[2] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[3] Phil Hanlon,et al. On the decomposition of Brauer's centralizer algebras , 1989 .
[4] P. Martin. On Diagram Categories , Representation Theory and Statistical Mechanics , 2011 .
[5] O. Ogievetsky,et al. A New Fusion Procedure for the Brauer Algebra and Evaluation Homomorphisms , 2011, 1101.1336.
[6] V. Turaev,et al. Ribbon graphs and their invaraints derived from quantum groups , 1990 .
[7] Leonard L. Scott,et al. Quantum Weyl Reciprocity and Tilting Modules , 1998 .
[8] G. Lehrer,et al. Cellular algebras and diagram algebras in representation theory , 2004 .
[9] A. Bracken,et al. Quantum group invariants and link polynomials , 1991 .
[10] David N. Yetter,et al. Coherence theorems via knot theory , 1992 .
[11] Mei Si,et al. A criterion on the semisimple Brauer algebras II , 2006, J. Comb. Theory A.
[12] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[13] The fundamental theorems of vector invariants , 1989 .
[14] H. Weyl. The Classical Groups , 1940 .
[15] R. Goodman,et al. Representations and Invariants of the Classical Groups , 1998 .
[16] P. M. Cohn. GROUPES ET ALGÉBRES DE LIE , 1977 .
[17] G. Lehrer,et al. Strongly multiplicity free modules for Lie algebras and quantum groups , 2006 .
[18] P. Podles,et al. Introduction to Quantum Groups , 1998 .
[19] P. Hanlon,et al. On the Semisimplicity of the Brauer Centralizer Algebras , 1999 .
[20] M. A. Lohe,et al. Quantum Groups at Roots of Unity , 1995 .
[21] G. Lehrer,et al. THE SECOND FUNDAMENTAL THEOREM OF INVARIANT THEORY FOR THE ORTHOGONAL GROUP , 2011, 1102.3221.
[22] Jun Hu,et al. On tensor spaces for Birman–Murakami–Wenzl algebras , 2010 .
[23] H. Weyl. The Classical Groups , 1939 .
[24] Changchang Xi. On the Quasi-Heredity of Birman–Wenzl Algebras☆ , 2000 .
[25] Joan S. Birman,et al. Braids, link polynomials and a new algebra , 1989 .
[26] T. Kerler. On braided tensor categories , 1994, hep-th/9402018.
[27] Hebing Rui,et al. A criterion on the semisimple Brauer algebras , 2005, J. Comb. Theory, Ser. A.
[28] G. Lehrer,et al. A Temperley–Lieb Analogue for the BMW Algebra , 2008, 0806.0687.
[29] G. Lehrer,et al. Diagram algebras, Hecke algebras and decomposition numbers at roots of unity , 2003 .
[30] Vaughan F. R. Jones,et al. Hecke algebra representations of braid groups and link polynomials , 1987 .
[31] G. Lehrer,et al. Cellular algebras , 1996 .
[32] V. Turaev. OPERATOR INVARIANTS OF TANGLES, AND R-MATRICES , 1990 .
[33] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .
[34] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[35] G. Lehrer,et al. On Endomorphisms of Quantum Tensor Space , 2008, 0806.3807.