Optical Sensing Using Dark Mode Excitation in an Asymmetric Dimer Metamaterial

We study the presence of dark and bright modes in a planar metamaterial with a double rod unit cell introducing geometric asymmetry in rod lengths. The dark mode displays a Fano-type resonance with a sharp asymmetric profile, rendering it far more sensitive than the bright mode to slight variations of the dielectric environment. This peculiar feature may envisage the possible application of the asymmetric dimer metamaterial as an optical sensor for chemical or biological analysis, provided that the effect of material losses on the dark mode quality factor is properly taken into account.

[1]  Benjamin Gallinet,et al.  Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials , 2011, 1105.2503.

[2]  Nikolay I. Zheludev,et al.  Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency , 2009 .

[3]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[4]  I. Al-Naib,et al.  Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. , 2012, Optics letters.

[5]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[6]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[7]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[8]  X Zhang,et al.  Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. , 2010, Optics express.

[9]  Jaeyoun Kim,et al.  Joining plasmonics with microfluidics: from convenience to inevitability. , 2012, Lab on a chip.

[10]  N I Zheludev,et al.  Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. , 2007, Physical review letters.

[11]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[12]  Changtao Wang,et al.  Investigation of Fano resonance in planar metamaterial with perturbed periodicity. , 2013, Optics express.

[13]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[14]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[15]  Martin Koch,et al.  Sharp Fano resonances in THz metamaterials. , 2011, Optics express.

[16]  G. Castaldi,et al.  Experimental evidence of cut-wire-induced enhanced transmission of transverse-electric fields through sub-wavelength slits in a thin metallic screen. , 2010, Optics express.

[17]  J. Homola Surface plasmon resonance based sensors , 2006 .

[18]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[19]  G. Shvets,et al.  Suppression of long-range collective effects in meta-surfaces formed by plasmonic antenna pairs. , 2011, Optics express.

[20]  Carlos Escobedo,et al.  On-chip nanohole array based sensing: a review. , 2013, Lab on a chip.

[21]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[22]  V. Shalaev Optical negative-index metamaterials , 2007 .

[23]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[24]  F. Lederer,et al.  Coupling between a dark and a bright eigenmode in a terahertz metamaterial , 2009, 0901.0365.

[25]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[26]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[27]  C. Reale,et al.  Optical constants of vacuum deposited thin metal films in the near infrared , 1970 .

[28]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[29]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[30]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[31]  Basudev Lahiri,et al.  Asymmetric split ring resonators for optical sensing of organic materials. , 2009, Optics express.