Entanglement between Identical Particles Is a Useful and Consistent Resource

The existence of fundamentally identical particles represents a foundational distinction between classical and quantum mechanics. Due to their exchange symmetry, identical particles can appear to be entangled -- another uniquely quantum phenomenon with far-reaching practical implications. However, a long-standing debate has questioned whether identical particle entanglement is physical or merely a mathematical artefact. In this work, we provide such particle entanglement with a consistent theoretical description as a quantum resource in processes frequently encountered in optical and cold atomic systems. This leads to a plethora of applications of immediate practical impact. On one hand, we show that the metrological advantage for estimating phase shifts in systems of identical bosons amounts to a measure of their particle entanglement, with a clearcut operational meaning. On the other hand, we demonstrate in general terms that particle entanglement is the property resulting in directly usable mode entanglement when distributed to separated parties, with particle conservation laws in play. Application of our tools to an experimental implementation with Bose-Einstein condensates leads to the first quantitative estimation of identical particle entanglement. Further connections are revealed between particle entanglement and other resources such as optical nonclassicality and quantum coherence. Overall, this work marks a resolutive step in the ongoing debate by delivering a unifying conceptual and practical understanding of entanglement between identical particles.

[1]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[2]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[3]  C.-Y. Hsieh,et al.  Gaussian Thermal Operations and The Limits of Algorithmic Cooling. , 2020, Physical review letters.

[4]  David Edward Bruschi,et al.  Particle and anti-particle bosonic entanglement in non-inertial frames , 2012, 1205.5296.

[5]  Lorenza Viola,et al.  A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables , 2005 .

[6]  J I Cirac,et al.  Nonlocal resources in the presence of superselection rules. , 2003, Physical review letters.

[7]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[8]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[9]  Kok Chuan Tan,et al.  Nonclassicality as a Quantifiable Resource for Quantum Metrology. , 2018, Physical review letters.

[10]  Yu Shi Quantum entanglement of identical particles , 2003 .

[11]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[12]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[13]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[14]  R. Glauber The Quantum Theory of Optical Coherence , 1963 .

[15]  P. Knight,et al.  Introductory Quantum Optics: Frontmatter , 2004 .

[16]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[17]  D. Braun,et al.  Quantifying quantumness and the quest for Queens of Quantum , 2010, 1002.2158.

[18]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[19]  C. Simon Natural Entanglement in Bose-Einstein Condensates , 2001, quant-ph/0110114.

[20]  ENTANGLEMENT OF IDENTICAL PARTICLES AND REFERENCE PHASE UNCERTAINTY , 2003, quant-ph/0311028.

[21]  G. Compagno,et al.  Dealing with indistinguishable particles and their entanglement , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  M. Fadel,et al.  Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in a Bose-Einstein condensate , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[23]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[24]  Kok Chuan Tan,et al.  Quantifying the Coherence between Coherent States. , 2017, Physical review letters.

[25]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[26]  Randall D. Kamien,et al.  Reviews of Modern Physics at 90 , 2019, Physics Today.

[27]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[28]  Peter Harremoës,et al.  Rate of convergence to Poisson law in terms of information divergence , 2004, IEEE Transactions on Information Theory.

[29]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[30]  L. Pezzè,et al.  Resolution-enhanced entanglement detection , 2016, 1612.06320.

[31]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[32]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[34]  Eugene P. Wigner,et al.  The Intrinsic Parity of Elementary Particles , 1952 .

[35]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[36]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[37]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[38]  Thomas Hellman PHIL , 2018, Encantado.

[39]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[40]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[41]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[42]  Castin,et al.  Bose-Einstein Condensates in Time Dependent Traps. , 1996, Physical review letters.

[43]  Fabio Benatti,et al.  Remarks on Entanglement and Identical Particles , 2017, Open Syst. Inf. Dyn..

[44]  Giuseppe Compagno,et al.  Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing. , 2017, Physical review letters.

[45]  M. Fadel,et al.  Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates , 2017, Science.

[46]  Fabio Benatti,et al.  Entanglement and squeezing with identical particles: ultracold atom quantum metrology , 2011 .

[47]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[48]  R. Leighton,et al.  Feynman Lectures on Physics , 1971 .

[49]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[50]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[51]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[52]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[53]  R. Melko,et al.  Entanglement area law in superfluid 4He , 2016, Nature Physics.

[54]  W. Vogel,et al.  Entanglement witnesses for indistinguishable particles , 2015, 1501.02595.

[55]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[56]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[57]  Aram W. Harrow,et al.  The Church of the Symmetric Subspace , 2013, 1308.6595.

[58]  J. Calsamiglia,et al.  Computable measure of nonclassicality for light. , 2004, Physical review letters.

[59]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[60]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[61]  T. Rudolph,et al.  Classical and quantum communication without a shared reference frame. , 2003, Physical review letters.

[62]  Vlatko Vedral,et al.  General framework for quantum macroscopicity in terms of coherence , 2015, 1505.03792.

[63]  T. Wei Exchange symmetry and global entanglement and full separability , 2010, 1005.5407.

[64]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[65]  V. Giovannetti,et al.  Characterizing the entanglement of bipartite quantum systems , 2002, quant-ph/0210155.

[66]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[67]  B. Yurke,et al.  Bell's-inequality experiments using independent-particle sources. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[68]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.

[69]  B. Garraway,et al.  New spin squeezing and other entanglement tests for two mode systems of identical bosons , 2013, 1307.6744.

[70]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[71]  A. Bach,et al.  The simplex structure of the classical states of the quantum harmonic oscillator , 1986 .

[72]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[73]  Roberto Floreanini,et al.  Entanglement of Identical Particles , 2014, Open Syst. Inf. Dyn..

[74]  U. Marzolino,et al.  Entanglement in indistinguishable particle systems , 2020 .

[75]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[76]  G. Tóth,et al.  Entanglement and extreme spin squeezing for a fluctuating number of indistinguishable particles , 2012, 1204.5329.

[77]  Fernando de Melo,et al.  Entanglement of identical particles and the detection process , 2009, 0902.1684.

[78]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.

[79]  Wang Xiang-bin Theorem for the beam-splitter entangler , 2002 .

[80]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[81]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[82]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[83]  M. Plenio,et al.  Converting Nonclassicality into Entanglement. , 2015, Physical review letters.

[84]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[85]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[86]  M. Gu,et al.  Thermodynamic resources in continuous-variable quantum systems , 2019, 1909.07364.

[87]  W. Marsden I and J , 2012 .

[88]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[89]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[90]  P. Kunkel,et al.  Spatially distributed multipartite entanglement enables EPR steering of atomic clouds , 2017, Science.

[91]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.

[92]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[93]  Jayne Thompson,et al.  Operational Resource Theory of Continuous-Variable Nonclassicality , 2018, Physical Review X.

[94]  Géza Tóth,et al.  Entanglement between two spatially separated atomic modes , 2017, Science.

[95]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[96]  Tsubasa Ichikawa,et al.  Exchange symmetry and multipartite entanglement , 2008, 0805.3625.

[97]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[98]  W. Vogel,et al.  Quantification of Nonclassicality , 2009, 0904.3390.

[99]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[100]  B. Garraway,et al.  Quantum entanglement for systems of identical bosons: I. General features , 2017 .

[101]  Daniel Cavalcanti,et al.  Useful entanglement from the Pauli principle , 2007 .

[102]  W. Vogel,et al.  The Schmidt number as a universal entanglement measure , 2009, 0908.3974.

[103]  P. Milman,et al.  Metrological advantage at finite temperature for Gaussian phase estimation , 2018, Physical Review A.