Buried Interface Modulation via Preferential Crystallization in All‐Inorganic Perovskite Solar Cells: The Case of Multifunctional Ti3C2Tx

[1]  Zheng Hong Zhu,et al.  Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact , 2023, Science.

[2]  Le-Yong Yu,et al.  Current Understanding of the Wettability of MXenes , 2022, Advanced Materials Interfaces.

[3]  Yue Zhang,et al.  Pushing the Limit of Open‐Circuit Voltage Deficit via Modifying Buried Interface in CsPbI3 Perovskite Solar Cells , 2022, Advanced materials.

[4]  Zhike Liu,et al.  Fluorine Functionalized MXene QDs for Near‐Record‐Efficiency CsPbI3 Solar Cell with High Open‐Circuit Voltage , 2022, Advanced Functional Materials.

[5]  Li Yang,et al.  Functionalized-MXene-nanosheet-doped tin oxide enhances the electrical properties in perovskite solar cells , 2022, Cell Reports Physical Science.

[6]  W. Choy,et al.  Buried Interface Modification in Perovskite Solar Cells: A Materials Perspective , 2022, Advanced Energy Materials.

[7]  Hao Yu,et al.  Regulation of the rutile/anatase TiO2 phase junction in-situ grown on -OH terminated Ti3C2T (MXene) towards remarkably enhanced photocatalytic hydrogen evolution , 2022, Chemical Engineering Journal.

[8]  A. Köhler,et al.  The Impact of Solvent Vapor on the Film Morphology and Crystallization Kinetics of Lead Halide Perovskites during Annealing. , 2021, ACS applied materials & interfaces.

[9]  S. Olthof,et al.  Defects in CsPbX3 Perovskite: From Understanding to Effective Manipulation for High‐Performance Solar Cells , 2021, Small methods.

[10]  W. Xiang,et al.  Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells. , 2021, Angewandte Chemie.

[11]  Karim Khan,et al.  Application of MXenes in Perovskite Solar Cells: A Short Review , 2021, Nanomaterials.

[12]  Xiaoji G. Xu,et al.  Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility , 2021, Science.

[13]  Guangfen Wei,et al.  Effects of Bromine Substitution and Vacancy Defects on the Structural and Electronic Properties of Black Orthorhombic CsPbI3 Perovskite , 2021, physica status solidi (RRL) – Rapid Research Letters.

[14]  Rui Zhu,et al.  Plasma Oxidized Ti3C2Tx MXene as Electron Transport Layer for Efficient Perovskite Solar Cells. , 2021, ACS applied materials & interfaces.

[15]  Yang Yang,et al.  Single-Layered MXene Nanosheets Doping TiO2 for Efficient and Stable Double Perovskite Solar Cells. , 2021, Journal of the American Chemical Society.

[16]  Michael Saliba,et al.  Shaping Perovskites: In Situ Crystallization Mechanism of Rapid Thermally Annealed, Prepatterned Perovskite Films , 2021, ACS applied materials & interfaces.

[17]  Qingliang Liao,et al.  Manipulation of Perovskite Crystallization Kinetics via Lewis Base Additives , 2021, Advanced Functional Materials.

[18]  S. Seok,et al.  Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells , 2020 .

[19]  Huicong Liu,et al.  Additive Engineering Toward High‐Performance CsPbI 3 Perovskite Solar Cells , 2020 .

[20]  T. Luo,et al.  Printable CsPbI3 Perovskite Solar Cells with PCE of 19% via an Additive Strategy , 2020, Advanced materials.

[21]  Oskar J. Sandberg,et al.  On the Origin of the Ideality Factor in Perovskite Solar Cells , 2020, Advanced Energy Materials.

[22]  Hongwei Song,et al.  Dual Interfacial Modification Engineering with 2D MXene Quantum Dots and Copper Sulphide Nanocrystals Enabled High‐Performance Perovskite Solar Cells , 2020, Advanced Functional Materials.

[23]  Q. Zheng,et al.  A facile surface passivation method for efficient inorganic CsPbI2Br perovskite solar cells with efficiencies over 15% , 2020, Science China Materials.

[24]  Shangfeng Yang,et al.  Modifying Mesoporous TiO2 by Ammonium Sulfonate Boosts Performance of Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[25]  A. Jen,et al.  Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base , 2020, Nature Communications.

[26]  G. Cui,et al.  Chemical Composition and Phase Evolution in DMAI-Derived Inorganic Perovskite Solar Cells , 2020 .

[27]  Xiaomin Liu,et al.  The Role of Dimethylammonium Iodine in CsPbI3 Perovskite Fabrication: Additive or Dopant? , 2019, Angewandte Chemie.

[28]  Y. Gogotsi,et al.  Surface‐Modified Metallic Ti3C2Tx MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells , 2019, Advanced Functional Materials.

[29]  P. F. Méndez,et al.  Analysis of the UV–Ozone‐Treated SnO 2 Electron Transporting Layer in Planar Perovskite Solar Cells for High Performance and Reduced Hysteresis , 2019, Solar RRL.

[30]  M. Green,et al.  Fabrication of Efficient and Stable CsPbI3 Perovskite Solar Cells through Cation Exchange Process , 2019, Advanced Energy Materials.

[31]  Nathan C Frey,et al.  Surface Termination Dependent Work Function and Electronic Properties of Ti3C2Tx MXene , 2019, Chemistry of Materials.

[32]  Y. Zhang,et al.  Interfacial Modification in Organic and Perovskite Solar Cells , 2019, Advanced materials.

[33]  T. Ma,et al.  High Electrical Conductivity 2D MXene Serves as Additive of Perovskite for Efficient Solar Cells. , 2018, Small.

[34]  Yixin Zhao,et al.  Efficient α-CsPbI3 Photovoltaics with Surface Terminated Organic Cations , 2018, Joule.

[35]  Dong Yang,et al.  High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2 , 2018, Nature Communications.

[36]  Yong‐Young Noh,et al.  Impact of Hydroxyl Groups Boosting Heterogeneous Nucleation on Perovskite Grains and Photovoltaic Performances , 2018, The Journal of Physical Chemistry C.

[37]  J. Kong,et al.  Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis‐Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open‐Circuit Voltage and Stability , 2018, Advanced Energy Materials.

[38]  Xiaohui Qiu,et al.  A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells , 2018, Advanced materials.

[39]  Jinsong Huang,et al.  Thin single crystal perovskite solar cells to harvest below-bandgap light absorption , 2017, Nature Communications.

[40]  J. Warzywoda,et al.  Reduction of Oxygen Vacancy Related Traps in TiO2 and the Impacts on Hybrid Perovskite Solar Cells , 2017 .

[41]  Juan Bisquert,et al.  Photovoltage Behavior in Perovskite Solar Cells under Light-Soaking Showing Photoinduced Interfacial Changes , 2017 .

[42]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[43]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[44]  S. Zakeeruddin,et al.  Enhancing Efficiency of Perovskite Solar Cells via N‐doped Graphene: Crystal Modification and Surface Passivation , 2016, Advanced materials.

[45]  F. Toma,et al.  Defective TiO2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells , 2016, Nature Communications.

[46]  J. Teuscher,et al.  Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[47]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[48]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[49]  Martijn Lenes,et al.  Origin of the dark-current ideality factor in polymer:fullerene bulk heterojunction solar cells , 2011 .

[50]  A. Rudawska,et al.  Analysis for determining surface free energy uncertainty by the Owen–Wendt method , 2009 .

[51]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[52]  R. Bube Trap Density Determination by Space‐Charge‐Limited Currents , 1962 .