Theory of Electronic States and Transport in Carbon Nanotubes

A brief review is given of electronic and transport properties of carbon nanotubes obtained mainly in a k · p scheme. The topics include a giant Aharonov–Bohm effect on the band gap and a Landau-level formation in magnetic fields, magnetic properties, interaction effects on the band structure, optical absorption spectra, and exciton effects. Transport properties are also discussed including absence of backward scattering except for scatterers with a potential range smaller than the lattice constant, its extension to multi-channel cases, a conductance quantization in the presence of short-range and strong scatterers such as lattice vacancies, and transport across junctions between nanotubes with different diameters. A continuum model for phonons in the long-wavelength limit and the resistivity determined by phonon scattering are reviewed as well.

[1]  T. Yamabe,et al.  Electronic properties of bucky-tube model , 1992 .

[2]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[3]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[4]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[5]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[6]  E. J. Mele,et al.  Temperature-dependent resistivity of single-wall carbon nanotubes , 1997, cond-mat/9704117.

[7]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[8]  S. Louie,et al.  Low Energy Properties of (n,n) Carbon Nanotubes , 1997 .

[9]  J. Ihm,et al.  Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .

[10]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[11]  Correlated transport and non-Fermi-liquid behavior in single-wall carbon nanotubes , 1998, cond-mat/9803128.

[12]  P. Lambin,et al.  ATOMIC AND ELECTRONIC STRUCTURES OF LARGE AND SMALL CARBON TORI , 1998 .

[13]  C. Schönenberger,et al.  Interference and Interaction in multi-wall carbon nanotubes , 1999, cond-mat/9905144.

[14]  M. Fisher,et al.  Correlation effects in carbon nanotubes , 1996, cond-mat/9611126.

[15]  T. Ando,et al.  Magnetic Properties of Ensembles of Carbon Nanotubes , 1995 .

[16]  M. Dresselhaus,et al.  Carbon fibers based on C60 and their symmetry. , 1992, Physical review. B, Condensed matter.

[17]  D. Dubois,et al.  ELECTRON INTERACTIONS. PART I. FIELD THEORY OF A DEGENERATE ELECTRON GAS , 1959 .

[18]  S. Louie,et al.  Quantum conductance of multiwall carbon nanotubes , 2002 .

[19]  Takashi Miyake,et al.  Quasiparticle band structure of carbon nanotubes , 2003 .

[20]  T. Ando Effects of magnetic field and flux on perfect channel in metallic carbon nanotubes , 2004 .

[21]  Ogawa,et al.  Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects. , 1991, Physical review. B, Condensed matter.

[22]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[23]  M. Tsukada,et al.  CONDUCTANCE OF NANOTUBE JUNCTIONS AND ITS SCALING LAW , 1997 .

[24]  Ando,et al.  Magnetoresistance in quantum wires: Boundary-roughness scattering. , 1991, Physical review. B, Condensed matter.

[25]  T. Ando,et al.  Effects of Lattice Vacancy in Carbon Nanotubes Conductance Quantization , 2000 .

[26]  H. Mizes,et al.  Long-Range Electronic Perturbations Caused by Defects Using Scanning Tunneling Microscopy , 1989, Science.

[27]  D. Thouless,et al.  Electrons in disordered systems and the theory of localization , 1974 .

[28]  T. Ando Spin-Orbit Interaction in Carbon Nanotubes , 2000 .

[29]  Masatsura Igami,et al.  Conductance of Carbon Nanotubes with a Vacancy , 1999 .

[30]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[31]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[32]  Sumio Iijima,et al.  Growth of carbon nanotubes , 1993 .

[33]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[34]  M. Dresselhaus Carbon nanotubes , 1995 .

[35]  T. Ando,et al.  Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices , 2002 .

[36]  E. Anderson,et al.  Scanned probe microscopy of electronic transport in carbon nanotubes. , 2000, Physical review letters.

[37]  Freeman J. Dyson,et al.  The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics , 1962 .

[38]  Tsuneya Ando,et al.  Phonons and Electron-Phonon Scattering in Carbon Nanotubes , 2002 .

[39]  H. Kataura,et al.  Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures , 2003, Nature.

[40]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[41]  S. Louie,et al.  Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes , 1999 .

[42]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[43]  Y. Saito,et al.  Coulomb effects on the fundamental optical transition in semiconducting single-walled carbon nanotubes: Divergent behavior in the small-diameter limit , 2002 .

[44]  T. Ando,et al.  Effective Mass Theory of Carbon Nanotubes with Vacancies in Magnetic Fields , 2001 .

[45]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[46]  David Tománek,et al.  Electronic and structural properties of multiwall carbon nanotubes , 1998 .

[47]  Schönhammer,et al.  Spectral functions for the Tomonaga-Luttinger model. , 1992, Physical review. B, Condensed matter.

[48]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[49]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[50]  V. C. Moore,et al.  Estimation of Magnetic Susceptibility Anisotropy of Carbon Nanotubes Using Magnetophotoluminescence , 2004 .

[51]  T. Ando,et al.  Presence of Perfectly Conducting Channel in Metallic Carbon Nanotubes , 2002 .

[52]  Lin,et al.  Elementary excitations in cylindrical tubules. , 1993, Physical review. B, Condensed matter.

[53]  P. Ajayan,et al.  Electronic structure and localized states at carbon nanotube tips , 1997 .

[54]  T. Ando,et al.  Effects of Short-Range Scatterers on Perfect Channel in Metallic Carbon Nanotubes , 2004 .

[55]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[56]  T. Ando,et al.  Numerical Study of Transport in Carbon Nanotubes with Lattice Vacancy , 1999 .

[57]  Hiroshi Ajiki,et al.  Lattice Distortion with Spatial Variation of Carbon Nanotubes in Magnetic Fields , 1996 .

[58]  T. Ando,et al.  Carbon nanotubes as quantum wires on a cylinder surface , 1997 .

[59]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[60]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[61]  Dunlap Constraints on small graphitic helices. , 1994, Physical review. B, Condensed matter.

[62]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[63]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[64]  Satoshi Itoh,et al.  Helically coiled and toroidal cage forms of graphitic carbon , 1995 .

[65]  S. Roche,et al.  Conduction mechanisms and magnetotransport in multiwalled carbon nanotubes , 2001 .

[66]  Lu Novel magnetic properties of carbon nanotubes. , 1994, Physical review letters.

[67]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[68]  Zhanghua Wu,et al.  INTERFERENCE-MODULATED CONDUCTANCE IN A THREE-TERMINAL NANOTUBE SYSTEM , 1999 .

[69]  Riichiro Saito,et al.  Electronic structure and growth mechanism of carbon tubules , 1993 .

[70]  S. Saito,et al.  Geometries, Electronic Properties, and Energetics of Isolated Single Walled Carbon Nanotubes , 2002 .

[71]  E. J. Mele,et al.  Electronic structure of carbon nanotube ropes , 2000 .

[72]  T. Ando,et al.  Conductance of Carbon Nanotubes with a Stone{Wales Defect , 2001 .

[73]  T. Hertel,et al.  Quantitative analysis of optical spectra from individual single-wall carbon nanotubes , 2003 .

[74]  T. Ando,et al.  Effect of lattice vacancy on conductance of carbon nanotubes , 2000 .

[75]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[76]  Quantum Transport in a Carbon Nanotube in Magnetic Fields , 1997 .

[77]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[78]  Tsuneya Ando,et al.  Hall conductivity of a two-dimensional graphite system , 2002 .

[79]  S. Bachilo,et al.  Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot , 2003 .

[80]  Hiroshi Ajiki,et al.  Magnetic Properties of Carbon Nanotubes , 1993 .

[81]  Riichiro Saito,et al.  Raman intensity of single-wall carbon nanotubes , 1998 .

[82]  T. Ando,et al.  Effects of Trigonal Warping on Perfect Channel in Metallic Carbon Nanotubes , 2004 .

[83]  Y. Saito,et al.  Exciton Effects of Optical Transitions in Single-Wall Carbon Nanotubes. , 1999 .

[84]  T. Ando,et al.  Presence of Zero-Energy Cap-States in Carbon Nanotubes , 2004 .

[85]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[86]  T. Pedersen Variational approach to excitons in carbon nanotubes , 2003 .

[87]  Tsuneya Ando Theory of transport in carbon nanotubes , 2000 .

[88]  Nguyen Hong Shon,et al.  Quantum Transport in Two-Dimensional Graphite System , 1998 .

[89]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[90]  P. Lambin,et al.  Energetics of bent carbon nanotubes , 1998 .

[91]  T. Ando Excitons in Carbon Nanotubes Revisited: Dependence on Diameter, Aharonov–Bohm Flux, and Strain , 2004 .

[92]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[93]  E. Chang,et al.  Excitons in carbon nanotubes: an ab initio symmetry-based approach. , 2004, Physical review letters.

[94]  P. Ajayan,et al.  Electrical resistance of a single carbon nanotube , 1996 .

[95]  Chang,et al.  Electronic properties of graphite nanotubules from galvanomagnetic effects. , 1994, Physical review letters.

[96]  Ihara,et al.  Toroidal forms of graphitic carbon. II. Elongated tori. , 1993, Physical review. B, Condensed matter.

[97]  Dresselhaus,et al.  Symmetry properties of chiral carbon nanotubes. , 1993, Physical review. B, Condensed matter.

[98]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[99]  J. Ihm,et al.  Development of an energy barrier at the metal-chain-metallic-carbon-nanotube nanocontact , 1999 .

[100]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[101]  S. Datta,et al.  Coupling of Carbon Nanotubes to Metallic Contacts , 1999, cond-mat/9907357.

[102]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[103]  Spectral correlation in incommensurate multiwalled carbon nanotubes. , 2002, Physical review letters.

[104]  T. Ando,et al.  Lattice Distortion of Metallic Carbon Nanotubes Induced by Magnetic Fields , 1995 .

[105]  G. Kresse,et al.  Phonon softening in metallic nanotubes by a Peierls-like mechanism. , 2002, Physical review letters.

[106]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[107]  Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States , 1998, cond-mat/9812408.

[108]  T. Ando,et al.  Conductance of Crossed Carbon Nanotubes , 2001 .

[109]  M. Dresselhaus,et al.  Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters , 2004 .

[110]  T. Ando,et al.  Effective-Mass Theory of Carbon Nanotube Junctions , 1998 .

[111]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[112]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[113]  Leon Balents,et al.  COULOMB INTERACTIONS AND MESOSCOPIC EFFECTS IN CARBON NANOTUBES , 1997 .

[114]  Cees Dekker,et al.  Electron–electron correlations in carbon nanotubes , 1998, Nature.

[115]  R. Loudon,et al.  Theory of fine structure on the absorption edge in semiconductors , 1959 .

[116]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[117]  Dunlap,et al.  Connecting carbon tubules. , 1992, Physical review. B, Condensed matter.

[118]  Tsuneya Ando,et al.  Contact between Carbon Nanotube and Metallic Electrode. , 2000 .

[119]  C. Dekker,et al.  Logic circuits based on carbon nanotubes , 2003 .

[120]  T. M. Rice THE EFFECTS OF ELECTRON-ELECTRON INTERACTION ON THE PROPERTIES OF METALS , 1965 .

[121]  Akagi,et al.  Electronic structure of helically coiled cage of graphitic carbon. , 1995, Physical review letters.

[122]  Madhu Menon,et al.  Carbon Nanotube ``T Junctions'': Nanoscale Metal-Semiconductor-Metal Contact Devices , 1997 .

[123]  Yahachi Saito,et al.  Field Emission Patterns Originating from Pentagons at the Tip of a Carbon Nanotube , 2000 .

[124]  Angel Rubio,et al.  Electrical transport in carbon nanotubes: Role of disorder and helical symmetries , 2004 .

[125]  T. Ando,et al.  Lattice Instability in Metallic Carbon Nanotubes , 1994 .

[126]  T. Ando,et al.  Chirality-Dependent Resistivity in Carbon Nanotubes , 2000 .

[127]  Masatsura Igami,et al.  Effective-mass theory of carbon nanotubes with vacancy , 1999 .

[128]  Kobayashi,et al.  Exotic behavior of the dielectric function and the plasmons of an electron gas on a tubule. , 1993, Physical review. B, Condensed matter.

[129]  V. C. Moore,et al.  Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes , 2004, Science.

[130]  R. Krupke,et al.  FTIR-luminescence mapping of dispersed single-walled carbon nanotubes , 2003 .

[131]  Tamura,et al.  Electronic states of the cap structure in the carbon nanotube. , 1995, Physical review. B, Condensed matter.

[132]  Dunlap,et al.  Relating carbon tubules. , 1994, Physical review. B, Condensed matter.

[133]  Yoshinori Ando,et al.  Pentagons, heptagons and negative curvature in graphite microtubule growth , 1992, Nature.

[134]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[135]  Remarks on Bloch's Method of Sound Waves applied to Many-Fermion Problems , 1950 .

[136]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[137]  Steven G. Louie,et al.  Disorder, Pseudospins, and Backscattering in Carbon Nanotubes , 1999 .

[138]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[139]  R. Loudon,et al.  Theory of the absorption edge in semiconductors in a high magnetic field , 1960 .

[140]  A. Zettl,et al.  Localization and nonlinear resistance in telescopically extended nanotubes. , 2004, Physical review letters.

[141]  K. Wakabayashi,et al.  Random-Matrix Approach to Quantum Electron Transport in Metallic Carbon Nanotubes , 2003 .

[142]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[143]  T. Ando,et al.  Effective-mass theory of electron correlations in band structure of semiconducting carbon nanotubes , 2003 .

[144]  Morelli,et al.  Magnetic susceptibility of carbon structures. , 1994, Physical review. B, Condensed matter.

[145]  M. P. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1999 .

[146]  Band Structures of Periodic Carbon Nanotube Junctions and Their Symmetries Analyzed by the Effective Mass Approximation , 1998, cond-mat/9812037.

[147]  T. Ando,et al.  Conductance of Carbon Nanotube Junctions in Magnetic Fields , 1997 .

[148]  M. Yudasaka,et al.  Nano-aggregates of single-walled graphitic carbon nano-horns , 1999 .

[149]  J. W. McClure Diamagnetism of Graphite , 1956 .

[150]  Zikang Tang,et al.  Optical properties of 0.4-nm single-wall carbon nanotubes aligned in channels of AlPO4-5 single crystals , 2004 .

[151]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[152]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[153]  T. Ando Dynamical Conductivity in Metallic Carbon Nanotubes , 2002 .

[154]  G. Mahan,et al.  Flexure modes in carbon nanotubes , 2004 .

[155]  P. McEuen,et al.  Formation of a p-type quantum dot at the end of an n-type carbon nanotube , 2001 .

[156]  Ogawa,et al.  Interband absorption spectra and Sommerfeld factors of a one-dimensional electron-hole system. , 1991, Physical review. B, Condensed matter.

[157]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[158]  Seiji Uryu,et al.  Electronic states and quantum transport in double-wall carbon nanotubes , 2004 .

[159]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[160]  Lin-Chung Pj,et al.  Magnetoplasma oscillations in nanoscale tubules with helical symmetry. , 1994 .

[161]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[162]  C. H. Chen,et al.  Defects in Carbon Nanostructures , 1994, Science.

[163]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[164]  Phaedon Avouris,et al.  Scaling of excitons in carbon nanotubes. , 2004, Physical review letters.

[165]  X. B. Zhang,et al.  The study of carbon nanotubules produced by catalytic method , 1994 .

[166]  One-Dimensional Hydrogen Atom , 1959 .

[167]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[168]  X. B. Zhang,et al.  A Structure Model and Growth Mechanism for Multishell Carbon Nanotubes , 1995, Science.

[169]  J. M. Luttinger An Exactly Soluble Model of a Many‐Fermion System , 1963 .

[170]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[171]  J. Tersoff Contact resistance of carbon nanotubes , 1999 .

[172]  J. Hafner,et al.  Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes , 2001 .

[173]  Tian,et al.  Aharonov-Bohm-type effect in graphene tubules: A Landauer approach. , 1994, Physical review. B, Condensed matter.

[174]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[175]  Wang,et al.  Quasiparticle energy spectra and magnetic response of certain curved graphitic geometries. , 1992, Physical review. B, Condensed matter.

[176]  M. Yumura,et al.  Quantum interference of electrons in multiwall carbon nanotubes , 1999 .

[177]  S. Louie,et al.  Excitonic effects and optical spectra of single-walled carbon nanotubes. , 2003, Physical review letters.

[178]  F. Dyson A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .

[179]  T. Ando,et al.  Topological effects in capped carbon nanotubes , 2001 .

[180]  Lin,et al.  Magnetoplasmons and persistent currents in cylindrical tubules. , 1993, Physical review. B, Condensed matter.

[181]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[182]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[183]  Spin splitting and even-odd effects in carbon nanotubes , 1998, cond-mat/9804154.

[184]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[185]  W. C. Herndon,et al.  Tubular graphic carbon structures , 1992 .

[186]  Peter J. F. Harris,et al.  Carbon Nanotubes and Related Structures: New Materials for the Twenty-first Century , 1999 .

[187]  G. Mahan,et al.  Electron-phonon effects in graphene and armchair (10,10) single-wall carbon nanotubes , 2000 .

[188]  K. Chang,et al.  Electron transport in telescoping carbon nanotubes , 2002 .

[189]  T. Ando,et al.  Boltzmann Conductivity of a Carbon Nanotube in Magnetic Fields , 1997 .

[190]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[191]  T. Ando,et al.  Energy bands of carbon nanotubes in magnetic fields , 1996 .

[192]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 2000, Physical review letters.

[193]  R. Saito,et al.  Magnetic energy bands of carbon nanotubes. , 1994, Physical review. B, Condensed matter.

[194]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[195]  T. Ando,et al.  Aharonov-Bohm effect in carbon nanotubes , 1994 .

[196]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[197]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[198]  DMPK Equation for Transmission Eigenvalues in Metallic Carbon Nanotubes , 2004, cond-mat/0411595.

[199]  Effective-mass approach to interaction effects on electronic structure in carbon nanotubes , 2004 .

[200]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[201]  Voit Charge-spin separation and the spectral properties of Luttinger liquids. , 1993, Physical review. B, Condensed matter.

[202]  T. Ando,et al.  Localized Eigenstates in Carbon Nanotube Caps , 2002 .

[203]  Quantum conductance steps in solutions of multiwalled carbon nanotubes. , 2003, Physical review letters.

[204]  T. Ando,et al.  Huge magnetoresistance by phonon scattering in carbon nanotubes , 2000 .

[205]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[206]  G. Mahan,et al.  Oscillations of a thin hollow cylinder: Carbon nanotubes , 2002 .

[207]  Slepyan,et al.  Negative differential conductivity in carbon nanotubes , 2000, Physical review letters.

[208]  M. Tsukada,et al.  Conductance of nano-tube junctions and its scaling law , 1997 .

[209]  Hiroshi Ajiki,et al.  Electronic States of Carbon Nanotubes , 1993 .