TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.

[1]  F. Kortüm,et al.  Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome , 2015, Nature Genetics.

[2]  P. Ng,et al.  Phen-Gen: combining phenotype and genotype to analyze rare disorders , 2014, Nature Methods.

[3]  J. Rubinstein,et al.  Eukaryotic V-ATPase: novel structural findings and functional insights. , 2014, Biochimica et biophysica acta.

[4]  D. G. MacArthur,et al.  Guidelines for investigating causality of sequence variants in human disease , 2014, Nature.

[5]  M. Bamshad,et al.  Solving glycosylation disorders: fundamental approaches reveal complicated pathways. , 2014, American journal of human genetics.

[6]  C. Biot,et al.  Alkynyl monosaccharide analogues as a tool for evaluating Golgi glycosylation efficiency: application to Congenital Disorders of Glycosylation (CDG). , 2013, Chemical communications.

[7]  Magalie S Leduc,et al.  Clinical whole-exome sequencing for the diagnosis of mendelian disorders. , 2013, The New England journal of medicine.

[8]  A. Hoischen,et al.  Mutations in ANTXR1 cause GAPO syndrome. , 2013, American journal of human genetics.

[9]  G. Matthijs,et al.  Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. , 2013, Human molecular genetics.

[10]  J. Rilstone,et al.  VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy , 2013, Acta Neuropathologica.

[11]  H. Freeze,et al.  TMEM165 deficiency causes a congenital disorder of glycosylation. , 2012, American journal of human genetics.

[12]  D. Ungar,et al.  Re‘COG’nition at the Golgi , 2012, Traffic.

[13]  Christian Gilissen,et al.  Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. , 2012, Human molecular genetics.

[14]  Thomas D. Cuypers,et al.  Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase , 2012, Genome Biology.

[15]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[16]  Alberto Luini,et al.  Mendelian disorders of membrane trafficking. , 2011, The New England journal of medicine.

[17]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[18]  R. Wevers,et al.  Vacuolar H+-ATPase meets glycosylation in patients with cutis laxa. , 2009, Biochimica et biophysica acta.

[19]  B. Fernandez,et al.  Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. , 2009, Human molecular genetics.

[20]  J. Jaeken,et al.  Long-standing mild hypertransaminasaemia caused by congenital disorder of glycosylation (CDG) type IIx , 2008, Journal of Inherited Metabolic Disease.

[21]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[22]  J. Marth,et al.  Glycosylation in Cellular Mechanisms of Health and Disease , 2006, Cell.

[23]  W. Sly,et al.  A phenocopy of CAII deficiency: a novel genetic explanation for inherited infantile osteopetrosis with distal renal tubular acidosis , 2003, Journal of medical genetics.

[24]  Susan Smith Recombination: a means to an end in human cells , 2000, Nature Genetics.

[25]  S. Scherer,et al.  Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing , 2000, Nature Genetics.

[26]  L. Notarangelo,et al.  Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis , 2000, Nature Genetics.

[27]  Yuqiong Liang,et al.  Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification , 1999, Nature Genetics.

[28]  T. Stevens,et al.  Assembly of the Yeast Vacuolar H+-ATPase Occurs in the Endoplasmic Reticulum and Requires a Vma12p/Vma22p Assembly Complex , 1998, The Journal of cell biology.

[29]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[30]  Gert Matthijs,et al.  Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2 , 2008, Nature Genetics.

[31]  C. Cremers,et al.  Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness , 1999, Nature Genetics.