Lagrangian heuristics for the Quadratic Knapsack Problem

This paper investigates two Lagrangian heuristics for the Quadratic Knapsack Problem. They originate from distinct linear reformulations of the problem and follow the traditional approach of generating Lagrangian dual bounds and then using their corresponding solutions as an input to a primal heuristic. One Lagrangian heuristic, in particular, is a Non-Delayed Relax-and-Cut algorithm. Accordingly, it differs from the other heuristic in that it dualizes valid inequalities on-the-fly, as they become necessary. The algorithms are computationally compared here with two additional heuristics, taken from the literature. Comparisons being carried out over problem instances up to twice as large as those previously used. Three out of the four algorithms, including the Lagrangian heuristics, are CPU time intensive and typically return very good quality feasible solutions. A certificate of that being given by the equally good Lagrangian dual bounds we generate. Finally, this paper is intended as a contribution towards the investigation of more elaborated heuristics to the problem, an area that has been barely investigated so far.

[1]  Philippe Michelon,et al.  Lagrangean methods for the 0-1 Quadratic Knapsack Problem , 1996 .

[2]  Abilio Lucena,et al.  Lagrangian Relax-and-Cut Algorithms , 2006, Handbook of Optimization in Telecommunications.

[3]  Claude Lemaréchal,et al.  Lagrangian Relaxation , 2000, Computational Combinatorial Optimization.

[4]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[5]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[6]  Alexandre Salles da Cunha,et al.  A relax-and-cut algorithm for the prize-collecting Steiner problem in graphs , 2009, Discret. Appl. Math..

[7]  Laurence A. Wolsey,et al.  Formulations and valid inequalities for the node capacitated graph partitioning problem , 1996, Math. Program..

[8]  P. Hansen,et al.  Best network flow bounds for the quadratic knapsack problem , 1989 .

[9]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[10]  Alexandre Salles da Cunha,et al.  A New Lagrangian Based Branch and Bound Algorithm for the 0-1 Knapsack Problem , 2010, Electron. Notes Discret. Math..

[11]  G. Nemhauser,et al.  Integer Programming , 2020 .

[12]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[13]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[14]  Kavindra Malik,et al.  A Lagrangian relax-and-cut approach for the sequential ordering problem with precedence relationships , 1994, Ann. Oper. Res..

[15]  Abilio Lucena Non Delayed Relax-and-Cut Algorithms , 2005, Ann. Oper. Res..

[16]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[17]  Alain Billionnet,et al.  A new upper bound for the 0-1 quadratic knapsack problem , 1999, Eur. J. Oper. Res..

[18]  R. Weismantel,et al.  A Semidefinite Programming Approach to the Quadratic Knapsack Problem , 2000, J. Comb. Optim..

[19]  P. Hammer,et al.  Quadratic knapsack problems , 1980 .

[20]  David Pisinger,et al.  The quadratic knapsack problem - a survey , 2007, Discret. Appl. Math..

[21]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[22]  Alain Billionnet,et al.  An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem , 2004, Eur. J. Oper. Res..

[23]  Christoph Witzgall Mathematical methods of site selection for Electronic Message Systems (EMS) , 1975 .

[24]  Abilio Lucena,et al.  Lagrangian heuristics for the linear ordering problem , 2004 .

[25]  Jorge Pinho de Sousa,et al.  Metaheuristics: Computer Decision-Making , 2010 .

[26]  Vittorio Maniezzo,et al.  Matheuristics: Hybridizing Metaheuristics and Mathematical Programming , 2009 .

[27]  Philippe Michelon,et al.  0-1 Quadratic Knapsack Problems: An Exact Approach Based on a t-Linearization , 2012, SIAM J. Optim..

[28]  Alexandre Salles da Cunha,et al.  Lower and upper bounds for the degree-constrained minimum spanning tree problem , 2007, Networks.

[29]  George L. Nemhauser,et al.  Min-cut clustering , 1993, Math. Program..

[30]  Adam N. Letchford,et al.  A Dynamic Programming Heuristic for the Quadratic Knapsack Problem , 2014, INFORMS J. Comput..

[31]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[32]  Cid C. de Souza,et al.  A Relax-and-Cut algorithm for the set partitioning problem , 2008, Comput. Oper. Res..

[33]  J. Rhys A Selection Problem of Shared Fixed Costs and Network Flows , 1970 .

[34]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[35]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[36]  Franz Rendl,et al.  Quadratic Knapsack Relaxations Using Cutting Planes , 1996, IPCO.

[37]  Alain Billionnet,et al.  Linear programming for the 0–1 quadratic knapsack problem , 1996 .