DMQL: A Data Mining Query Language for Relational Databases

The emerging data mining tools and systems lead naturally to the demand of a powerful data mining query language, on top of which many interactive and exible graphical user interfaces can be developed. This motivates us to design a data mining query language, DMQL, for mining di erent kinds of knowledge in relational databases. Portions of the proposed DMQL language have been implemented in our DBMiner system for interactive mining of multiple-level knowledge in relational databases.

[1]  R. G. G. Cattell,et al.  Object Data Management: Object-Oriented and Extended Relational Database Systems (Revised Edition) , 1991 .

[2]  William Frawley,et al.  Knowledge Discovery in Databases , 1991 .

[3]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[4]  Jiawei Han Knowledge Discovery in Object-Oriented and Active Databases , 1993 .

[5]  Jiawei Han,et al.  Data-Driven Discovery of Quantitative Rules in Relational Databases , 1993, IEEE Trans. Knowl. Data Eng..

[6]  R. G. Cattell Object Data Management: Object-Oriented and Extended , 1994 .

[7]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[8]  R. Ng,et al.  Eecient and Eeective Clustering Methods for Spatial Data Mining , 1994 .

[9]  R. Agarwal Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[10]  Jiawei Han,et al.  Knowledge Mining in Databases: An Integration of Machine Learning Methodologies with Database Techno , 1995 .

[11]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[12]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[13]  Hans-Peter Kriegel,et al.  Knowledge Discovery in Large Spatial Databases: Focusing Techniques for Efficient Class Identification , 1995, SSD.

[14]  Jiawei Han,et al.  Meta-Rule-Guided Mining of Association Rules in Relational Databases , 1995, KDOOD/TDOOD.

[15]  Jiawei Han,et al.  Resource and Knowledge Discovery in Global Information Systems: A Preliminary Design and Experiment , 1995, KDD.

[16]  Jiawei Han,et al.  Discovery of Spatial Association Rules in Geographic Information Databases , 1995, SSD.

[17]  Carlo Zaniolo,et al.  Metaqueries for Data Mining , 1996, Advances in Knowledge Discovery and Data Mining.

[18]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[19]  Jorma Rissanen,et al.  SLIQ: A Fast Scalable Classifier for Data Mining , 1996, EDBT.

[20]  Venky Harinarayan,et al.  Implementing Data Cubes E ciently , 1996 .

[21]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[22]  Jörg Rech,et al.  Knowledge Discovery in Databases , 2001, Künstliche Intell..

[23]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.