Probabilistic Modeling for Symbolic Data
暂无分享,去创建一个
[1] G. Matheron. Random Sets and Integral Geometry , 1976 .
[2] Hans-Hermann Bock. CLUSTERING ALGORITHMS AND KOHONEN MAPS FOR SYMBOLIC DATA(Symbolic Data Analysis) , 2003 .
[3] Hans-Hermann Bock,et al. Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .
[4] Approximation of Distributions by Bounded Sets , 2007 .
[5] G. De Soete,et al. Clustering and Classification , 2019, Data-Driven Science and Engineering.
[6] Hans-Hermann Bock,et al. Classification and Related Methods of Data Analysis , 1988 .
[7] Ana Colubi,et al. Least squares estimation of linear regression models for convex compact random sets , 2007, Adv. Data Anal. Classif..
[8] Ilya Molchanov,et al. On the expected measure of a random set , 1997 .
[9] L. Billard,et al. Regression Analysis for Interval-Valued Data , 2000 .
[10] Manuel Montenegro,et al. Regression and correlation analyses of a linear relation between random intervals , 2001 .
[11] Hans-Hermann Bock,et al. Analysis of Symbolic Data , 2000 .
[12] Ulrich Furbach. KI 2005: Advances in Artificial Intelligence , 2005 .
[13] N. Draper,et al. Applied Regression Analysis , 1966 .
[14] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[15] Monique Noirhomme-Fraiture,et al. Symbolic Data Analysis and the SODAS Software , 2008 .
[16] Martin Schader,et al. Data Analysis and Decision Support , 2006 .
[17] Hans-Hermann Bock. Optimization in Symbolic Data Analysis: Dissimilarities, Class Centers, and Clustering , 2005, Data Analysis and Decision Support.
[18] L. Billard,et al. Symbolic Regression Analysis , 2002 .
[19] Günther Palm,et al. KI 2004: Advances in Artificial Intelligence , 2004, Lecture Notes in Computer Science.
[20] P. Groenen,et al. Data analysis, classification, and related methods , 2000 .
[21] Hans-Hermann Bock,et al. Classification, Clustering, and Data Analysis , 2002 .
[22] Yves Lechevallier,et al. Dynamical Clustering of Interval Data: Optimization of an Adequacy Criterion Based on Hausdorff Distance , 2002 .
[23] Robert D. Nowak,et al. Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..
[24] Marie Chavent,et al. A Hausdorff Distance Between Hyper-Rectangles for Clustering Interval Data , 2004 .
[25] Lynne Billard. Dependencies in Bivariate Interval-Valued Symbolic Data , 2004 .
[26] Kwang-Hyun Cho,et al. Level sets and minimum volume sets of probability density functions , 2003, Int. J. Approx. Reason..
[27] Ilya Molchanov,et al. Statistical Problems for Random Sets , 1997 .
[28] H. Bock. Probabilistic models in cluster analysis , 1996 .
[29] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[30] Hans-Hermann Bock,et al. PROBABILITY MODELS AND HYPOTHESES TESTING IN PARTITIONING CLUSTER ANALYSIS , 1996 .
[31] Belgium H. H. Bock. Analyzing Symbolic Data: Problems, Methods, and Perspectives , 2009 .
[32] Francisco de A. T. de Carvalho,et al. Applying Constrained Linear Regression Models to Predict Interval-Valued Data , 2005, KI.
[33] Hung T. Nguyen,et al. Random sets : theory and applications , 1997 .
[34] Ana Colubi,et al. Testing linear independence in linear models with interval-valued data , 2007, Comput. Stat. Data Anal..
[35] Ilya S. Molchanov,et al. Averaging of Random Sets Based on Their Distance Functions , 2004, Journal of Mathematical Imaging and Vision.
[36] Rudolf Kruse,et al. On the variance of random sets , 1987 .
[37] Francisco de A. T. de Carvalho,et al. A New Method to Fit a Linear Regression Model for Interval-Valued Data , 2004, KI.
[38] Hans-Hermann Bock. 6. Symbolic Data Analysis , 2003 .
[39] Hans-Hermann Bock,et al. Probabilistic Models in Partitional Cluster Analysis , 2003 .
[40] Wolfgang Gaul,et al. "Classification, Clustering, and Data Mining Applications" , 2004 .