Eigen‐analysis of nonlinear PCA with polynomial kernels
暂无分享,去创建一个
[1] Victor Vianu,et al. Invited articles section foreword , 2010, JACM.
[2] Jeongyoun Ahn,et al. A stable hyperparameter selection for the Gaussian RBF kernel for discrimination , 2010 .
[3] Alexander J. Smola,et al. Learning with kernels , 1998 .
[4] D Haussler,et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[5] Johan A. K. Suykens,et al. Sparse conjugate directions pursuit with application to fixed-size kernel models , 2011, Machine Learning.
[6] Johan A. K. Suykens,et al. Optimized fixed-size kernel models for large data sets , 2010, Comput. Stat. Data Anal..
[7] Ulrike von Luxburg,et al. A tutorial on spectral clustering , 2007, Stat. Comput..
[8] Jeongyoun Ahn. A stable hyperparameter selection for the Gaussian RBF kernel for discrimination , 2010, Stat. Anal. Data Min..
[9] Linda Kaufman,et al. Solving the quadratic programming problem arising in support vector classification , 1999 .
[10] Michael Rabadi,et al. Kernel Methods for Machine Learning , 2015 .
[11] Vladimir Vapnik,et al. The Nature of Statistical Learning , 1995 .
[12] Guy L. Scott,et al. Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix , 1990, BMVC.
[14] Christopher K. I. Williams,et al. Gaussian regression and optimal finite dimensional linear models , 1997 .
[15] M. Aizerman,et al. Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .
[16] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[17] B. Scholkopf,et al. Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[18] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[19] R. Shah,et al. Least Squares Support Vector Machines , 2022 .
[20] G. Wahba. Spline models for observational data , 1990 .
[21] Mia Hubert,et al. ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.
[22] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[23] G. Baudat,et al. Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.
[24] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[25] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[26] Noureddine El Karoui,et al. The spectrum of kernel random matrices , 2010, 1001.0492.
[27] Mikhail Belkin,et al. DATA SPECTROSCOPY: EIGENSPACES OF CONVOLUTION OPERATORS AND CLUSTERING , 2008, 0807.3719.