Assessment and Prediction of the Water Quality in Shrimp Culture Using Signal Processing Techniques

In recent years, artificial intelligence methods have proved appropriate for the treatment of environmental problems. This paper presents a novel work for the assessment and prediction of water quality in shrimp aquaculture based on environmental pattern processing. Water quality studies are based on analyzing negative concentrations of compounds in shrimp ponds that inhibit good growth and reproduction of organisms. The physical–chemical variables are classified based on the negative ecological impact using the Gamma (Γ) classifier, which calculates the frequency and deviation of the measurements from a specific level. A fuzzy inference system processes the level classifications using a reasoning process that determines when a specific concentration is good or harmful for the organism and provides a water quality index, which describes the condition of the ecosystem: excellent, good, regular, and poor. An autoregressive model (AR) predicts a section of an environmental signal using historical information, and the set of predicted variables are assessed in order to estimate future water quality conditions in the system. This methodology emerges as a suitable and alternative tool to be used in developing effective water management plans.

[1]  Juan David Gutiérrez,et al.  LÓGICA DIFUSA COMO HERRAMIENTA PARA LA BIOINDICACIÓN DE LA CALIDAD DEL AGUA CON MACROINVERTEBRADOS ACUÁTICOS EN LA SABANA DE BOGOTÁ - COLOMBIA , 2004 .

[2]  Vicenç Soler Ruiz Lógica difusa aplicada a conjuntos imbalanceados: aplicación a la detección del Síndrome de Down , 2007 .

[3]  Einar Wensink,et al.  Small sample statistics of the Yule-Walker method for autoregressive parameter estimation , 2000, 2000 10th European Signal Processing Conference.

[4]  Jian Li,et al.  The effects of dissolved oxygen concentration and stocking density on growth and non-specific immunity factors in Chinese shrimp, Fenneropenaeus chinensis , 2006 .

[5]  Francisco José Simois Tirado Tratamiento Digital de Señales , 2011 .

[6]  William Ocampo-Duque,et al.  Assessing water quality in rivers with fuzzy inference systems: a case study. , 2006, Environment international.

[7]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[8]  Emmanuel Ifeachor,et al.  Digital Signal Processing: A Practical Approach , 1993 .

[9]  P. A. Blight The Analysis of Time Series: An Introduction , 1991 .

[10]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[11]  C. Collins,et al.  A NOTE ON UPPER OCEAN TEMPERATURE AND SALINITY AT THE ENTRANCE TO THE GULF OF CALIFORNIA IN AUGUST 1992 , 1997 .

[12]  Y. Iano,et al.  Evaluating some Yule-Walker Methods with the Maximum-Likelihood Estimator for the Spectral ARMA Model , 2008 .

[13]  David S. Stoffer,et al.  Time series analysis and its applications , 2000 .

[14]  Mj Martin Bastiaans Time-frequency signal analysis , 2008 .

[15]  T. Samocha,et al.  Characterization of water quality factors during intensive raceway production of juvenile Litopenaeus vannamei using limited discharge and biosecure management tools , 2005 .

[16]  Mo-Yuen Chow Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection , 1998 .

[17]  Daniel F. Garcia,et al.  Modelado de series temporales con métodos en bloque y recursivos: desarrollo de estimadores y predictores adaptativos , 1988 .

[18]  J. Kenney Mathematics of statistics , 1940 .

[19]  Cornelio Yáñez-Márquez,et al.  Analysis and Prediction of Air Quality Data with the Gamma Classifier , 2008, CIARP.

[20]  Juan David Gutiérrez,et al.  BIOINDICACIÓN DE LA CALIDAD DEL AGUA EN LA SABANA DE BOGOTA - COLOMBIA, MEDIANTE LA UTILIZACIÓN DE LA LÓGICA DIFUSA NEURO-ADAPTATIVA COMO HERRAMIENTA , 2006 .

[21]  Chuntian Cheng,et al.  Using support vector machines for long-term discharge prediction , 2006 .

[22]  J. Delgado,et al.  Ecología de los sistemas agrícolas , 1979 .

[23]  K. Reckhow Water quality prediction and probability network models , 1999 .

[24]  K. Chau,et al.  Neural network and genetic programming for modelling coastal algal blooms , 2006 .