PRICING AND HEDGING OF PORTFOLIO CREDIT DERIVATIVES WITH INTERACTING DEFAULT INTENSITIES

We consider reduced-form models for portfolio credit risk with interacting default intensities. In this class of models default intensities are modeled as functions of time and of the default state of the entire portfolio, so that phenomena such as default contagion or counterparty risk can be modeled explicitly. In the present paper this class of models is analyzed by Markov process techniques. We study in detail the pricing and the hedging of portfolio-related credit derivatives such as basket default swaps and collaterized debt obligations (CDOs) and discuss the calibration to market data.

[1]  A. Cousin,et al.  An extension of Davis and Lo's contagion model , 2009, 0904.1653.

[2]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[3]  Emilio Barucci,et al.  The dynamics of social interaction with agents’ heterogeneity , 2009 .

[4]  K. Giesecke,et al.  Credit Contagion and Aggregate Losses , 2004 .

[5]  H. Pagès,et al.  Bank incentives and optimal CDOs , 2009 .

[6]  Rüdiger Frey,et al.  Portfolio Credit Risk Models with Interacting Default Intensities: a Markovian Approach , 2004 .

[7]  Leif B. G. Andersen,et al.  Extensions to the Gaussian Copula: Random Recovery and Random Factor Loadings , 2005 .

[8]  J. Jacod Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales , 1975 .

[9]  M. Davis,et al.  Infectious defaults , 2001 .

[10]  Alan G. White,et al.  Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation , 2004 .

[11]  Olivier Vigneron,et al.  On break-even correlation: the way to price structured credit derivatives by replication , 2009, 1204.2251.

[12]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[13]  D. Vere-Jones Markov Chains , 1972, Nature.

[14]  Leonard Rogers,et al.  A Dynamic Approach to the Modeling of Correlation Credit Derivatives Using Markov Chains , 2009 .

[15]  J. Gregory,et al.  Basket Default Swaps, Cdos and Factor Copulas , 2005 .

[16]  David X. Li On Default Correlation , 2000 .

[17]  U. Horst Stochastic cascades, credit contagion, and large portfolio losses , 2007 .

[18]  Monique Jeanblanc,et al.  Hedging of Defaultable Claims , 2004 .

[19]  Giuseppe Di Graziano A dynamic approach to the modelling of correlation credit derivatives using Markov chains , 2006 .

[20]  Fan Yu,et al.  CORRELATED DEFAULTS IN INTENSITY‐BASED MODELS , 2007 .

[21]  Philipp J. Sch Onbucher Information - driven default contagion , 2004 .

[23]  David Lando,et al.  On cox processes and credit risky securities , 1998 .

[24]  R. Jarrow,et al.  Counterparty Risk and the Pricing of Defaultable Securities , 1999 .

[25]  Alexander Herbertsson Pricing Synthetic CDO Tranches in a Model with Default Contagion Using the Matrix-Analytic Approach , 2008 .

[26]  Dynamic hedging of synthetic CDO tranches with spread risk and default contagion , 2010 .

[27]  M. Avellaneda,et al.  CREDIT CONTAGION: PRICING CROSS-COUNTRY RISK IN BRADY DEBT MARKETS , 2001 .

[28]  Ralf Werner,et al.  The Normal Inverse Gaussian Distribution for Synthetic CDO Pricing , 2007 .

[29]  Dominique Guegan,et al.  Collateralized Debt Obligations Pricing and Actor Models: A New Methodology Using Normal Inverse Gaussian Distributions , 2005 .

[30]  Darrell Duffie,et al.  Risk and Valuation of Collateralized Debt Obligations , 2001 .