Mechanisms of tandem repeat instability in bacteria.

[1]  M. Inouye,et al.  Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. , 1966, Cold Spring Harbor symposia on quantitative biology.

[2]  D. Mount A mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Ames,et al.  Revised methods for the Salmonella mutagenicity test. , 1983, Mutation research.

[4]  G. Levinson,et al.  High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 , 1987, Nucleic Acids Res..

[5]  T. Meyer,et al.  Genetic mechanisms and biological implications of phase variation in pathogenic neisseriae , 1989, Clinical Microbiology Reviews.

[6]  M. Bichara,et al.  Z-DNA-forming sequences are spontaneous deletion hot spots. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Miller,et al.  A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Moxon,et al.  The molecular mechanism of phase variation of H. influenzae lipopolysaccharide , 1989, Cell.

[9]  J. Miller,et al.  A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. , 1990, Genetics.

[10]  R. Sinden,et al.  Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli , 1991, Nature.

[11]  D. Maskell,et al.  Phase variation of lipopolysaccharide in Haemophilus influenzae. , 1991, Research in microbiology.

[12]  R. Woodgate Construction of a umuDC operon substitution mutation in Escherichia coli. , 1992, Mutation research.

[13]  F. Mooi,et al.  Phase variation of H. influenzae fimbriae: Transcriptional control of two divergent genes through a variable combined promoter region , 1993, Cell.

[14]  K. McEntee,et al.  Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation , 1994, Journal of bacteriology.

[15]  D. Leach Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  S. Kowalczykowski,et al.  Biochemistry of homologous recombination in Escherichia coli. , 1994, Microbiological reviews.

[17]  E. Eichler,et al.  Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. , 1995, Biochemistry.

[18]  Keiichi Ohshima,et al.  Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli , 1995, Nature Genetics.

[19]  G. Fox,et al.  DNA CTG triplet repeats involved in dynamic mutations of neurologically related gene sequences form stable duplexes. , 1995, Nucleic acids research.

[20]  I. Haworth,et al.  The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. , 1995, Nucleic acids research.

[21]  K. Woodford,et al.  CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. , 1995, Nucleic acids research.

[22]  R. Sinden,et al.  Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands , 1995, Journal of bacteriology.

[23]  Competition between parental and recombinant plasmids affects the measure of recombination frequencies. , 1995, Plasmid.

[24]  R. Wells,et al.  Pausing of DNA Synthesis in Vitro at Specific Loci in CTG and CGG Triplet Repeats from Human Hereditary Disease Genes (*) , 1995, The Journal of Biological Chemistry.

[25]  R. Sinden,et al.  Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Jackson,et al.  In vitro expansion of GGC:GCC repeats: identification of the preferred strand of expansion. , 1996, Nucleic acids research.

[27]  Myron F. Goodman,et al.  Gene Targeting in Rat Embryo Fibroblasts Promoted by the Polyomavirus Large T Antigen Associated With Neurological Diseases , 1996 .

[28]  R. Gellibolian,et al.  Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. , 1996, Journal of molecular biology.

[29]  R. Sinden,et al.  Single-stranded DNA-binding protein enhances the stability of CTG triplet repeats in Escherichia coli , 1996, Journal of bacteriology.

[30]  R. Fleischmann,et al.  DNA repeats identify novel virulence genes in Haemophilus influenzae. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Sinden,et al.  Relationship between Escherichia coli growth and deletions of CTG.CAG triplet repeats in plasmids. , 1996, Journal of molecular biology.

[32]  R. Sinden,et al.  Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. , 1996, Biochemistry.

[33]  R. Wells Molecular Basis of Genetic Instability of Triplet Repeats (*) , 1996, The Journal of Biological Chemistry.

[34]  R. Sinden,et al.  Erratum: Single-stranded DNA-binding protein enhances the stability of CTG triplet repeats in Escherichia coli (Journal of Bacteriology 178:16 (5042)) , 1996 .

[35]  E. Wilson,et al.  Reduced androgen receptor gene expression with first exon CAG repeat expansion. , 1996, Molecular endocrinology.

[36]  S. Tapscott,et al.  Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP , 1997, Nature Genetics.

[37]  A. van Belkum,et al.  UvA-DARE ( Digital Academic Repository ) Variable number of tandem repeats in clinical strains of Haemophilus influenzae , 1997 .

[38]  R. Wells,et al.  Transcription increases the deletion frequency of long CTG.CAG triplet repeats from plasmids in Escherichia coli. , 1997, Nucleic acids research.

[39]  S. Mirkin,et al.  Trinucleotide repeats affect DNA replication in vivo , 1997, Nature Genetics.

[40]  B. Michel,et al.  Isolation of a dnaE mutation which enhances RecA‐independent homologous recombination in the Escherichia coli chromosome , 1997, Molecular microbiology.

[41]  S. Lovett,et al.  Enhanced deletion formation by aberrant DNA replication in Escherichia coli. , 1997, Genetics.

[42]  M. Yamada,et al.  Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  M. Bichara,et al.  Two distinct models account for short and long deletions within sequence repeats in Escherichia coli , 1997, Journal of bacteriology.

[44]  T. Petes,et al.  Genetic control of microsatellite stability. , 1997, Mutation research.

[45]  S Lechat,et al.  Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. , 1997, Biochimie.

[46]  R. Wells,et al.  Hairpin Formation during DNA Synthesis Primer Realignmentin Vitro in Triplet Repeat Sequences from Human Hereditary Disease Genes* , 1997, The Journal of Biological Chemistry.

[47]  D. Sagher,et al.  Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. , 1997, Nucleic acids research.

[48]  E. Eichler,et al.  Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. , 1998, Biochemistry.

[49]  A. Jackson,et al.  Induction of microsatellite instability by oxidative DNA damage. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Pandolfo,et al.  Inhibitory Effects of Expanded GAA·TTC Triplet Repeats from Intron I of the Friedreich Ataxia Gene on Transcription and Replicationin Vivo * , 1998, The Journal of Biological Chemistry.

[51]  S. Reddy,et al.  CTG Repeats Show Bimodal Amplification in E. coli , 1998, Cell.

[52]  R. Sinden,et al.  Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. , 1998, Nucleic acids research.

[53]  P. Rice,et al.  Identification of the gene (lgtG) encoding the lipooligosaccharide beta chain synthesizing glucosyl transferase from Neisseria gonorrhoeae. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  V. Mizrahi,et al.  DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? , 1998, Molecular microbiology.

[55]  R. Frothingham,et al.  Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. , 1998, Microbiology.

[56]  S. Ehrlich,et al.  The role of SOS and flap processing in microsatellite instability in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Goodman,et al.  Analysis of Strand Slippage in DNA Polymerase Expansions of CAG/CTG Triplet Repeats Associated with Neurodegenerative Disease* , 1998, The Journal of Biological Chemistry.

[58]  R. Gellibolian,et al.  Small Slipped Register Genetic Instabilities in Escherichia coli in Triplet Repeat Sequences Associated with Hereditary Neurological Diseases* , 1998, The Journal of Biological Chemistry.

[59]  J. Weiser,et al.  Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide , 1998, Molecular microbiology.

[60]  Alex van Belkum,et al.  Short-Sequence DNA Repeats in Prokaryotic Genomes , 1998, Microbiology and Molecular Biology Reviews.

[61]  M. Bichara,et al.  Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. , 1998, Journal of molecular biology.

[62]  A EisenJ,et al.  DNA修復遺伝子,タンパクと過程のphylogenomic(系統発生的ゲノム)調査 , 1999 .

[63]  R. Wells,et al.  Genetic Instabilities in (CTG·CAG) Repeats Occur by Recombination* , 1999, The Journal of Biological Chemistry.

[64]  R. Fuchs,et al.  Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. , 1999, Mutation research.

[65]  B. Strauss,et al.  Frameshift mutation, microsatellites and mismatch repair. , 1999, Mutation research.

[66]  E. G. Frank,et al.  UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  A. van Belkum,et al.  Variable numbers of tandem repeat loci in genetically homogeneous Haemophilus influenzae strains alter during persistent colonisation of cystic fibrosis patients. , 1999, FEMS Microbiology Letters.

[68]  J. Wagner,et al.  The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. , 1999, Molecular cell.

[69]  S. Lovett,et al.  Expansion of DNA repeats in Escherichia coli: effects of recombination and replication functions. , 1999, Journal of molecular biology.

[70]  P. Hanawalt,et al.  A phylogenomic study of DNA repair genes, proteins, and processes. , 1999, Mutation research.

[71]  A. Kuzminov Recombinational Repair of DNA Damage inEscherichia coli and Bacteriophage λ , 1999, Microbiology and Molecular Biology Reviews.

[72]  R. Wells,et al.  Nucleotide excision repair affects the stability of long transcribed (CTG*CAG) tracts in an orientation-dependent manner in Escherichia coli. , 1999, Nucleic acids research.

[73]  Z. Livneh,et al.  The Mutagenesis Protein UmuC Is a DNA Polymerase Activated by UmuD′, RecA, and SSB and Is Specialized for Translesion Replication* , 1999, The Journal of Biological Chemistry.

[74]  R. Wells,et al.  Expansion and Deletion of Triplet Repeat Sequences inEscherichia coli Occur on the Leading Strand of DNA Replication* , 1999, The Journal of Biological Chemistry.

[75]  R. Wells,et al.  Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability. , 2000, Journal of molecular biology.

[76]  D. Leach,et al.  The roles of mutS, sbcCD and recA in the propagation of TGG repeats in Escherichia coli. , 2000, Nucleic acids research.

[77]  K. Eckert,et al.  Mutational analyses of dinucleotide and tetranucleotide microsatellites in Escherichia coli: influence of sequence on expansion mutagenesis. , 2000, Nucleic acids research.

[78]  D. Field,et al.  The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases , 2000, Molecular microbiology.

[79]  R. Wells,et al.  Gene Conversion (Recombination) Mediates Expansions of CTG·CAG Repeats* , 2000, The Journal of Biological Chemistry.

[80]  J. Wagner,et al.  All three SOS‐inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis , 2000, The EMBO journal.

[81]  A. Jackson,et al.  Microsatellite instability induced by hydrogen peroxide in Escherichia coli. , 2000, Mutation research.

[82]  R. Sinden,et al.  DNA Polymerase III Proofreading Mutants Enhance the Expansion and Deletion of Triplet Repeat Sequences in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[83]  L. Reha-Krantz,et al.  Dinucleotide Repeat Expansion Catalyzed by Bacteriophage T4 DNA Polymerase in Vitro * , 2000, The Journal of Biological Chemistry.

[84]  A. L. La Spada,et al.  In vivo expansion of trinucleotide repeats yields plasmid and YAC constructs for targeting and transgenesis. , 2000, Gene.

[85]  H. Zoghbi,et al.  Fourteen and counting: unraveling trinucleotide repeat diseases. , 2000, Human molecular genetics.

[86]  R. Wells,et al.  Genetic Instabilities of Triplet Repeat Sequences by Recombination , 2000, IUBMB life.

[87]  H. Zoghbi,et al.  Trinucleotide repeats: mechanisms and pathophysiology. , 2000, Annual review of genomics and human genetics.

[88]  M. Bichara,et al.  Mechanisms of dinucleotide repeat instability in Escherichia coli. , 2000, Genetics.

[89]  T. Kunkel,et al.  Streisinger revisited: DNA synthesis errors mediated by substrate misalignments. , 2000, Cold Spring Harbor symposia on quantitative biology.

[90]  J. Wagner,et al.  Escherichia coli DNA Polymerase IV Mutator Activity: Genetic Requirements and Mutational Specificity , 2000, Journal of bacteriology.

[91]  C. Abbott,et al.  Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli , 2000, Molecular microbiology.

[92]  M. Yamada,et al.  Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli , 2001, Molecular Genetics and Genomics.

[93]  R. Wells,et al.  GGA·TCC-interrupted Triplets in Long GAA·TTC Repeats Inhibit the Formation of Triplex and Sticky DNA Structures, Alleviate Transcription Inhibition, and Reduce Genetic Instabilities* , 2001, The Journal of Biological Chemistry.

[94]  S. Ehrlich,et al.  Replication slippage involves DNA polymerase pausing and dissociation , 2001, The EMBO journal.

[95]  M. Cox,et al.  Recombinational DNA repair of damaged replication forks in Escherichia coli: questions. , 2001, Annual review of genetics.

[96]  C D Bayliss,et al.  The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. , 2001, The Journal of clinical investigation.

[97]  R. Sinden,et al.  Involvement of the Nucleotide Excision Repair Protein UvrA in Instability of CAG·CTG Repeat Sequences in Escherichia coli * , 2001, The Journal of Biological Chemistry.

[98]  M. Bichara,et al.  Modulation of transcription reveals a new mechanism of triplet repeat instability in Escherichia coli. , 2001, Journal of molecular biology.

[99]  A. Richardson,et al.  Mismatch repair and the regulation of phase variation in Neisseria meningitidis , 2001, Molecular microbiology.

[100]  M. Pandolfo,et al.  Sticky DNA, a Self-associated Complex Formed at Long GAA·TTC Repeats in Intron 1 of the Frataxin Gene, Inhibits Transcription* , 2001, The Journal of Biological Chemistry.

[101]  M. Mock,et al.  Diversity among French Bacillus anthracis Isolates , 2002, Journal of Clinical Microbiology.

[102]  E. Nevo,et al.  Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review , 2002, Molecular ecology.

[103]  R. Sinden,et al.  Instability of repeated DNAs during transformation in Escherichia coli. , 2002, Mutation research.

[104]  J. Wagner,et al.  Genetics of mutagenesis in E. coli: various combinations of translesion polymerases (Pol II, IV and V) deal with lesion/sequence context diversity. , 2002, DNA repair.

[105]  E. Moxon,et al.  Mutations in poll but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats , 2002, The EMBO journal.

[106]  R. Fuchs,et al.  How DNA lesions are turned into mutations within cells? , 2002, Oncogene.

[107]  M. Dixon,et al.  Examining the potential role of DNA polymerases η and ζ in triplet repeat instability in yeast , 2002 .

[108]  Tanja Popovic,et al.  Mutator clones of Neisseria meningitidis in epidemic serogroup A disease , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[109]  C. E. Pearson,et al.  Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions. , 2002, Nucleic acids research.

[110]  R. G. Lloyd,et al.  Recombinational repair and restart of damaged replication forks , 2002, Nature Reviews Molecular Cell Biology.

[111]  J. Wagner,et al.  Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells , 2002 .

[112]  R. Wells,et al.  Long CTG·CAG Repeats from Myotonic Dystrophy Are Preferred Sites for Intermolecular Recombination* , 2002, The Journal of Biological Chemistry.

[113]  R. Sinden,et al.  Genetic assays for measuring rates of (CAG).(CTG) repeat instability in Escherichia coli. , 2002, Mutation research.

[114]  M. Cox The nonmutagenic repair of broken replication forks via recombination. , 2002, Mutation research.

[115]  R. Sinden,et al.  Site-specific labeling of supercoiled DNA at the A+T rich sequences. , 2002, Biochemistry.

[116]  X. De Bolle,et al.  The length of a tetranucleotide repeat tract in Haemophilus influenzae determines the phase variation rate of a gene with homology to type III DNA methyltransferases , 2002 .

[117]  Ray A Wickenheiser,et al.  Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. , 2002, Journal of forensic sciences.

[118]  J. Wagner,et al.  The processivity factor β controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo , 2002, EMBO reports.

[119]  R. Wells,et al.  Long CTG·CAG Repeat Sequences Markedly Stimulate Intramolecular Recombination* , 2002, The Journal of Biological Chemistry.

[120]  R. Sinden,et al.  Chemotherapeutically induced deletion of expanded triplet repeats. , 2002, Mutation research.

[121]  Eric P. Skaar,et al.  Recombination, repair and replication in the pathogenic Neisseriae: the 3 R′s of molecular genetics of two human‐specific bacterial pathogens , 2003, Molecular microbiology.

[122]  M. Schofield,et al.  DNA mismatch repair: molecular mechanisms and biological function. , 2003, Annual review of microbiology.

[123]  R. Lahue,et al.  DNA repair and trinucleotide repeat instability. , 2003, Frontiers in bioscience : a journal and virtual library.

[124]  R. Fuchs,et al.  Uncoupling of Leading- and Lagging-Strand DNA Replication During Lesion Bypass in Vivo , 2003, Science.

[125]  Brooke L Heidenfelder,et al.  Hairpin Formation in Friedreich's Ataxia Triplet Repeat Expansion* , 2003, The Journal of Biological Chemistry.

[126]  M. W. van der Woude,et al.  Phase and Antigenic Variation in Bacteria , 2004, Clinical Microbiology Reviews.

[127]  E. Moxon,et al.  Mutations in Haemophilus influenzae Mismatch Repair Genes Increase Mutation Rates of Dinucleotide Repeat Tracts but Not Dinucleotide Repeat-Driven Pilin Phase Variation Rates , 2004, Journal of bacteriology.

[128]  E. Nevo,et al.  Microsatellites within genes: structure, function, and evolution. , 2004, Molecular biology and evolution.

[129]  J. Wagner,et al.  Properties and functions of Escherichia coli: Pol IV and Pol V. , 2004, Advances in protein chemistry.

[130]  R. Sinden,et al.  Genetic recombination destabilizes (CTG)n.(CAG)n repeats in E. coli. , 2004, Mutation research.

[131]  B. Michel,et al.  Multiple pathways process stalled replication forks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[132]  J. Barrett,et al.  Testing guidelines for hereditary non-polyposis colorectal cancer , 2004, Nature Reviews Cancer.

[133]  Eric Buel,et al.  Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis , 2004, Electrophoresis.

[134]  R. Wells,et al.  Transcription influences the types of deletion and expansion products in an orientation-dependent manner from GAC*GTC repeats. , 2004, Nucleic acids research.

[135]  D. Hood,et al.  Involvement of genes of genome maintenance in the regulation of phase variation frequencies in Neisseria meningitidis. , 2004, Microbiology.

[136]  R. Wells,et al.  Hairpin Structure-forming Propensity of the (CCTG·CAGG) Tetranucleotide Repeats Contributes to the Genetic Instability Associated with Myotonic Dystrophy Type 2* , 2004, Journal of Biological Chemistry.

[137]  E. Moxon,et al.  Simple sequence repeats (microsatellites): mutational mechanisms and contributions to bacterial pathogenesis. A meeting review. , 2004, FEMS immunology and medical microbiology.

[138]  R. Wells,et al.  DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli. , 2004, Journal of molecular biology.

[139]  E. Moxon,et al.  Induction of the SOS regulon of Haemophilus influenzae does not affect phase variation rates at tetranucleotide or dinucleotide repeats. , 2005, Microbiology.

[140]  D. Hood,et al.  Microsatellite instability regulates transcription factor binding and gene expression. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[141]  C. E. Pearson,et al.  Repeat instability: mechanisms of dynamic mutations , 2005, Nature Reviews Genetics.

[142]  R. Sinden,et al.  Generation of long tracts of disease-associated DNA repeats. , 2005, BioTechniques.

[143]  C. E. Pearson,et al.  Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. , 2005, Trends in genetics : TIG.

[144]  D. Hilton‐Jones,et al.  Clinical and molecular aspects of the myotonic dystrophies: A review , 2005, Muscle & nerve.

[145]  E. Moxon,et al.  Destabilization of tetranucleotide repeats in Haemophilus influenzae mutants lacking RnaseHI or the Klenow domain of PolI , 2005, Nucleic acids research.

[146]  Huda Y. Zoghbi,et al.  Diseases of Unstable Repeat Expansion: Mechanisms and Common Principles , 2005, Nature Reviews Genetics.

[147]  Marek Napierala,et al.  Advances in mechanisms of genetic instability related to hereditary neurological diseases , 2005, Nucleic acids research.

[148]  Bjørn‐Arne Lindstedt,et al.  Multiple‐locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria , 2005, Electrophoresis.

[149]  Richard R. Sinden,et al.  Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA , 2002, Journal of Biosciences.