A study of solid and liquid carbon tetrafluoride using the constant pressure molecular dynamics technique

The constant pressure molecular dynamics technique originally proposed by Andersen to study fluids and subsequently generalized by Parrinello and Rahman to deal with crystals of arbitrary symmetry has been further extended to treat molecular systems. As a pedagogical example designed to illustrate the utility of this approach, we have investigated the properties of carbon tetrafluoride in its condensed phases using an intermolecular potential based upon atom–atom interactions. In particular, we have explored the effect of changes in temperature and pressure on the orientationally ordered low temperature monoclinic solid. As in the real crystal, isobaric heating to sufficiently high temperature causes the ordered phase to transform spontaneously to a noncubic orientationally disordered phase. The properties of this disordered phase are also examined along with those of the liquid. The atom–atom potential appears to correlate a wide range of experimental data. The possible role of the electrostatic octopole...

[1]  M. Klein,et al.  Lattice dynamics of the high-pressure monoclinic phase of solid carbon tetrachloride , 1982 .

[2]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[3]  I. R. Mcdonald,et al.  Molecular dynamics calculations for the liquid and cubic plastic crystal phases of carbon tetrachloride , 1982 .

[4]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[5]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[6]  R. A. Aziz,et al.  Brillouin scattering and refractive index measurements on low temperature liquids. II. CF4, CF3Cl, CF2Cl2, CFCl3 and CCl4 , 1980 .

[7]  J. M. Haile,et al.  Molecular dynamics simulations extended to various ensembles. I. Equilibrium properties in the isoenthalpic–isobaric ensemble , 1980 .

[8]  J. Haile,et al.  On the isoenthalpic-isobaric ensemble in classical statistical mechanics , 1980 .

[9]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[10]  T. Shinoda Intermolecular Potential for Carbon Tetrafluoride , 1979 .

[11]  Sohail Murad,et al.  Singularity free algorithm for molecular dynamics simulation of rigid polyatomics , 1977 .

[12]  Antoinette J. Taylor,et al.  Thermodynamic and structural properties of liquids modelled by ‘2-Lennard-Jones centres’ pair potentials , 1977 .

[13]  Y. Kataoka,et al.  Theory of phase transitions in solid methanes. X. Centering around Phase II in solid CH4 , 1977 .

[14]  P. Cheung On the calculation of specific heats, thermal pressure coefficients and compressibilities in molecular dynamics simulations , 1977 .

[15]  D. Nicholson,et al.  Grand ensemble Monte-Carlo studies of physical adsorption , 1976 .

[16]  G. Lévi,et al.  Raman scattering: Orientational motions and collision frequency in liquid tetrafluoromethane from the triple to the critical point , 1975 .

[17]  A. Ron,et al.  Carbon tetrafluoride—phase II: Far‐infrared spectrum and crystal structure , 1975 .

[18]  F. Stillinger,et al.  Propagation of sound in water. A molecular-dynamics study , 1974 .

[19]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[20]  A. Erenburg,et al.  The crystal structure of a-CF4 , 1972 .

[21]  I. R. Mcdonald Excess thermodynamic properties of mixtures of Lennard-Jones liquids , 1972 .

[22]  C. Gray Theory of collision-induced absorption for spherical top molecules , 1971 .

[23]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[24]  V. Popov,et al.  The Heat Capacity of Solid CF4 , 1970 .

[25]  E. L. Pace,et al.  Thermodynamic properties of carbon tetrafluoride from 12.deg.K to its boiling point. Significance of the parameter .nu. , 1969 .

[26]  T. Shinoda,et al.  Thermodynamic Properties of Carbon Tetrafluoride from 4°K to Its Melting Point , 1969 .

[27]  M. J. Terry,et al.  The densities of liquid argon, krypton xenon, oxygen, nitrogen, carbon monoxide methane, and carbon tetrafluoride along the orthobaric liquid curve , 1969 .

[28]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[29]  T. Storvick,et al.  Intermolecular forces in globular molecules VI: octopole moments of tetrahedral molecules , 1968 .

[30]  Jerome K. Percus,et al.  Ensemble Dependence of Fluctuations with Application to Machine Computations , 1967 .

[31]  R. W. Harris,et al.  X‐Ray‐Diffraction Study of Carbon Tetrafluoride in the Liquid State , 1966 .

[32]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[33]  P. S. Hubbard,et al.  Nuclear Magnetic Relaxation and Diffusion in Liquid CH4, CF4, and Mixtures of CH4 and CF4 with Argon , 1963 .

[34]  R. Scott,et al.  Contribution of Octopole—Octopole Interactions to the Excess Properties of Mixtures of Tetrahedral Molecules , 1962 .

[35]  J. W. Stewart Compression and Phase Transitions of Solid NH3, SiF4, H2S, and CF4 , 1960 .

[36]  Thomas A. Keenan,et al.  Theory of Phase Transitions in Solid Heavy Methane , 1959 .

[37]  J. W. Stewart,et al.  Compression and Densities of Four Solidified Hydrocarbons and Carbon Tetrafluoride at 77°K , 1958 .

[38]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[39]  H. Bowen The structures of the trifluoromethyl halides , 1954 .

[40]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.