Electroreflectance spectroscopy of compressively strained InGaN/GaN multi-quantum well structures
暂无分享,去创建一个
[1] Wael Z. Tawfik,et al. Stress Engineering by Controlling Sapphire Substrate Thickness in 520 nm GaN-Based Light-Emitting Diodes , 2013 .
[2] J. Ha,et al. Uni-axial external stress effect on green InGaN/GaN multi-quantum-well light-emitting diodes , 2013 .
[3] Sang-Wan Ryu,et al. Effect of external tensile stress on blue InGaN/GaN multi-quantum-well light-emitting diodes , 2013 .
[4] Han-Youl Ryu,et al. Measurement of Internal Electric Field in GaN-Based Light-Emitting Diodes , 2012, IEEE Journal of Quantum Electronics.
[5] G. Jung,et al. Effects of Patterned Sapphire Substrates on Piezoelectric Field in Blue-Emitting InGaN Multiple Quantum Wells , 2010, IEEE Electron Device Letters.
[6] P. Douglas Yoder,et al. Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes , 2010 .
[7] E. Fred Schubert,et al. Improved performance of GaN-based blue light emitting diodes with InGaN/GaN multilayer barriers , 2009 .
[8] S. Denbaars,et al. Determination of polarization field in a semipolar (112¯2) InGa∕GaN single quantum well using Franz–Keldysh oscillations in electroreflectance , 2009 .
[9] Hao-Chung Kuo,et al. Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs , 2009, IEEE Journal of Selected Topics in Quantum Electronics.
[10] E. Fred Schubert,et al. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes , 2009 .
[11] Chih-Chung Yang,et al. Enhanced efficiency and reduced spectral shift of green light-emitting-diode epitaxial structure with prestrained growth , 2008 .
[12] S. Chuang,et al. Electronic and Optical Properties of ${\rm a}$- and ${\rm m}$-Plane Wurtzite InGaN–GaN Quantum Wells , 2007, IEEE Journal of Quantum Electronics.
[13] G. Janssen,et al. Stress and strain in polycrystalline thin films , 2007 .
[14] Peter Blood,et al. Determination of the piezoelectric field in InGaN quantum wells , 2005 .
[15] S. R. Kurtz,et al. Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells , 2004 .
[16] P. Perlin,et al. Photocurrent spectroscopy as a tool for determining piezoelectric fields in In x Ga 1 − x N / G a N multiple quantum well light emitting diodes , 2004 .
[17] J. S. Yahng,et al. Field-dependent carrier decay dynamics in strained In x Ga 1-x N/GaN quantum wells , 2002 .
[18] I. Akasaki,et al. Electric-field strength, polarization dipole, and multi-interface band offset in piezoelectric Ga 1 − x In x N / G a N quantum-well structures , 2000 .
[19] S. Chichibu,et al. Band-gap separation in InGaN epilayers grown by metalorganic chemical vapor deposition , 1998 .
[20] Shun Lien Chuang,et al. k.p method for strained wurtzite semiconductors , 1996 .
[21] H. Masui,et al. Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.
[22] J. Chyi,et al. Direct measurement of piezoelectric field in In0.23Ga0.77N/GaN multiple quantum wells by electrotransmission spectroscopy , 2002 .