The classification of periodic light curves from non-survey optimized observational data through automated extraction of phase-based visual features
暂无分享,去创建一个
[1] R. J. Smith,et al. STILT: System Design & Performance , 2013 .
[2] Pavlos Protopapas,et al. META-CLASSIFICATION FOR VARIABLE STARS , 2016, 1601.03013.
[3] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[4] M. G. Lattanzi,et al. GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.
[5] T. Bedding,et al. Hipparcos Period-Luminosity Relations for Mira and Semiregular variables , 1998, astro-ph/9808173.
[6] Dhiya Al-Jumeily,et al. A Dynamic, Modular Intelligent-Agent Framework for Astronomical Light Curve Analysis and Classification , 2016, ICIC.
[7] C. Bailer-Jones,et al. A package for the automated classification of periodic variable stars , 2015, 1512.01611.
[8] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[9] L. M. Sarro,et al. Automated supervised classification of variable stars - I. Methodology , 2007, 0711.0703.
[10] Laurent Eyer,et al. Variable stars across the observational HR diagram , 2007, 0712.3797.
[11] J. Gunn,et al. The Sloan Digital Sky Survey , 1994, astro-ph/9412080.
[12] A. K. Vivas,et al. The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo , 2001, astro-ph/0105135.
[13] Gustavo A. Medrano-Cerda,et al. The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.
[14] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[15] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[16] Geoffrey E. Hinton,et al. ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.
[17] Pavlos Protopapas,et al. FATS: Feature Analysis for Time Series , 2015, 1506.00010.
[18] M. Paegert,et al. THE EB FACTORY PROJECT. I. A FAST, NEURAL-NET-BASED, GENERAL PURPOSE LIGHT CURVE CLASSIFIER OPTIMIZED FOR ECLIPSING BINARIES , 2014, 1407.0443.
[19] DISCORDANCE OF THE UNIFIED SCHEME WITH OBSERVED PROPERTIES OF QUASARS AND HIGH-EXCITATION GALAXIES IN THE 3CRR SAMPLE , 2013, 1306.2087.