Some Eigenvalues Estimate for the ϕ -Laplace Operator on Slant Submanifolds of Sasakian Space Forms

<jats:p>This paper is aimed at establishing new upper bounds for the first positive eigenvalue of the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"> <mi>ϕ</mi> </math> </jats:inline-formula>-Laplacian operator on Riemannian manifolds in terms of mean curvature and constant sectional curvature. The first eigenvalue for the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M3"> <mi>ϕ</mi> </math> </jats:inline-formula>-Laplacian operator on closed oriented <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M4"> <mi>m</mi> </math> </jats:inline-formula>-dimensional slant submanifolds in a Sasakian space form <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M5"> <msup> <mrow> <mover accent="true"> <mi mathvariant="double-struck">M</mi> <mo stretchy="true">~</mo> </mover> </mrow> <mrow> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mfenced open="(" close=")"> <mrow> <mi>ε</mi> </mrow> </mfenced> </math> </jats:inline-formula> is estimated in various ways. Several Reilly-like inequalities are generalized from our findings for Laplacian to the <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M6"> <mi>ϕ</mi> </math> </jats:inline-formula>-Laplacian on slant submanifold in a sphere <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M7"> <msup> <mrow> <mi mathvariant="double-struck">S</mi> </mrow> <mrow> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </math> </jats:inline-formula> with <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M8"> <mi>ε</mi> <mo>=</mo> <mn>1</mn> </math> </jats:inline-formula> and <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M9"> <mi>ϕ</mi> <mo>=</mo> <mn>2</mn> </math> </jats:inline-formula>.</jats:p>

[1]  Ali H. Alkhaldi,et al.  Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces , 2021, Symmetry.

[2]  Akram Ali,et al.  A General Inequality for CR-Warped Products in Generalized Sasakian Space Form and Its Applications , 2021, Advances in Mathematical Physics.

[3]  Mehraj Ahmad Lone,et al.  Biharmonic submanifolds of Kaehler product manifolds , 2021, AIMS Mathematics.

[4]  Yanlin Li,et al.  Lightlike tangent developables in de Sitter 3-space , 2021, Journal of Geometry and Physics.

[5]  Yanlin Li,et al.  Tangent developables and Darboux developables of framed curves , 2020 .

[6]  Yushu Zhu,et al.  Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space , 2020 .

[7]  Jianxun He,et al.  Some Results for the Two-Sided Quaternionic Gabor Fourier Transform and Quaternionic Gabor Frame Operator , 2020, Advances in Applied Clifford Algebras.

[8]  T. Zhao,et al.  Slant helix of order n and sequence of Darboux developables of principal‐directional curves , 2020, Mathematical Methods in the Applied Sciences.

[9]  Rifaqat Ali,et al.  Eigenvalue inequalities for the p-Laplacian operator on C-totally real submanifolds in Sasakian space forms , 2020, Applicable Analysis.

[10]  Xianfeng Wang,et al.  Sharp Reilly-type inequalities for a class of elliptic operators on submanifolds , 2019, Differential Geometry and its Applications.

[11]  L. Piscoran,et al.  Geometric classification of warped products isometrically immersed into Sasakian space forms , 2018, Mathematische Nachrichten.

[12]  Changwei Xiong Eigenvalue estimates of Reilly type in product manifolds and eigenvalue comparison for strip domains , 2018, Differential Geometry and its Applications.

[13]  C. Xia,et al.  Estimates for eigenvalues of the Wentzell–Laplace operator , 2018, Journal of Geometry and Physics.

[14]  Hang Chen,et al.  Reilly-type inequalities for p-Laplacian on submanifolds in space forms , 2018, Nonlinear Analysis.

[15]  Casey Blacker,et al.  First eigenvalue of the $p$-Laplacian on Kähler manifolds , 2018, Proceedings of the American Mathematical Society.

[16]  Qun He,et al.  Reilly-Type Inequalities for the First Eigenvalue of p-Laplacian of Submanifolds in Minkowski Spaces , 2017 .

[17]  S. Seto,et al.  First eigenvalue of the $p$-Laplacian under integral curvature condition , 2017, 1707.04763.

[18]  A. Mondino,et al.  Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds , 2015, 1505.02061.

[19]  Jing Mao,et al.  Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds , 2015 .

[20]  T. Sasahara A class of biminimal Legendrian submanifolds in Sasakian space forms , 2014 .

[21]  A. Matei Conformal bounds for the first eigenvalue of the p-Laplacian , 2013 .

[22]  A. Naber,et al.  Sharp estimates on the first eigenvalue of the $$p$$p-Laplacian with negative Ricci lower bound , 2012, 1208.3507.

[23]  Yijun He Reilly type inequality for the first eigenvalue of the $L_{r; F}$ operator , 2011, 1112.2236.

[24]  Daniele Valtorta Sharp estimate on the first eigenvalue of the p-Laplacian , 2011, 1102.0539.

[25]  Haizhong Li,et al.  Second Eigenvalue of Paneitz Operators and Mean Curvature , 2010, 1010.3104.

[26]  L. Fernández,et al.  SLANT SUBMANIFOLDS IN SASAKIAN MANIFOLDS , 2000, Glasgow Mathematical Journal.

[27]  A. E. Soufi,et al.  Une inégalité du type “Reilly” pour les sous-variétés de l'espace hyperbolique , 1992 .

[28]  R. Reilly On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space , 1977 .

[29]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[30]  He-zi Lin Eigenvalue estimate and gap theorems for submanifolds in the hyperbolic space , 2017 .

[31]  B. Andrews Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations , 2014 .

[32]  Bang-Yen Chen,et al.  Totally real submanifolds , 1977 .