Water relations and hydraulic architecture in Cerrado trees : adjustments to seasonal changes in water availability and evaporative demand

O objetivo deste estudo foi determinar os ajustamentos na morfologia e fisiologia que permitem arvores das savanas neotropicais do Brasil Central (Cerrado) de evitar deficits hidricos e de manter um balanco hidrico interno praticamente constante apesar das variacoes sazonais da precipitacao e no deficit de saturacao do ar (D). A precipitacao na area de estudo e fortemente sazonal, com cerca de cinco meses praticamente sem chuva durante os quais D e duas vezes maior aos valores medidos na epoca chuvosa. Como consequencia da flutuacao sazonal das chuvas e de D, o potencial hidrico do solo muda substancialmente, nos primeiros 100 cm do solo, mas permanece quase constante abaixo de 2 m de profundidade. A arquitetura hidraulica e os parâmetros relacionados a relacoes hidricas das arvores do Cerrado se ajustaram durante a estacao seca para evitar o deficit hidrico crescente e assegurar a homeostase nos valores minimos de potencial hidrico foliar ψL e na perda total diaria de agua pela planta (iso-hidria). O comportamento iso-hidrico das arvores do Cerrado foi o resultado de uma diminuicao da superficie foliar total por arvore, um forte controle estomatico das perdas por evaporacao, um aumento na condutividade hidraulica especifica da folha e na condutância hidraulica foliar e um aumento da quantidade de aguas retirada dos reservatorios internos do caule, durante a estacao seca. A eficiencia no transporte de agua aumentou, nas mesmas proporcoes, nas folhas e nos ramos terminais durante a estacao seca. Todos estes ajustamentos sazonais foram importantes para a manutencao de ψL acima de limiares criticos, com isto contribuindo para uma reducao na formacao de embolismos nos ramos e ajudando a evitar a perda de turgor em tecidos foliares durante a epoca seca. Esses ajustes permitem que os ramos das especies lenhosas do Cerrado operem bem distanciados do ponto de disfuncao catastrofica para a cavitacao, enquanto as folhas operam proximas e sofrem embolismos em uma base diaria, especialmente durante a estacao seca.

[1]  G. Goldstein,et al.  Biophysical and life‐history determinants of hydraulic lift in Neotropical savanna trees , 2008 .

[2]  T. Giambelluca,et al.  Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna , 2008 .

[3]  G. Goldstein,et al.  Temporal dynamics of stem expansion and contraction in savanna trees: withdrawal and recharge of stored water. , 2008, Tree physiology.

[4]  C. Quesada,et al.  Seasonal variations in soil water in two woodland savannas of central Brazil with different fire history. , 2008, Tree physiology.

[5]  G. Goldstein,et al.  Water economy of Neotropical savanna trees: six paradigms revisited. , 2008, Tree physiology.

[6]  G. Goldstein,et al.  Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems , 2008, Oecologia.

[7]  D. Woodruff,et al.  Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. , 2007, Plant, cell & environment.

[8]  G. Goldstein,et al.  Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees. , 2007, Tree physiology.

[9]  G. Goldstein,et al.  Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees. , 2007, Plant, cell & environment.

[10]  Eddie Lenza,et al.  Comportamento fenológico de espécies lenhosas em um cerrado sentido restrito de Brasília, DF , 2006 .

[11]  P. Campanello,et al.  Nutrient availability constrains the hydraulic architecture and water relations of savannah trees. , 2006, Plant, cell & environment.

[12]  M. A. Damascos,et al.  Bud composition, branching patterns and leaf phenology in cerrado woody species. , 2005, Annals of botany.

[13]  Frederick C. Meinzer,et al.  Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna , 2005, Oecologia.

[14]  Frederick C. Meinzer,et al.  Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees , 2005, Trees.

[15]  G. Goldstein,et al.  Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit , 2005, Trees.

[16]  N. Holbrook,et al.  Leaf physiology does not predict leaf habit; examples from tropical dry forest , 2005, Trees.

[17]  G. Goldstein,et al.  Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. , 2004, Tree physiology.

[18]  C. Quesada,et al.  SEASONAL AND DEPTH VARIATION OF SOIL MOISTURE IN A BURNED OPEN SAVANNA (CAMPO SUJO) IN CENTRAL BRAZIL , 2004 .

[19]  G. Goldstein,et al.  Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. , 2004, Tree physiology.

[20]  G. Goldstein,et al.  Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. , 2004, Tree physiology.

[21]  N. Holbrook,et al.  Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. , 2004, The New phytologist.

[22]  Z. Wenhui,et al.  Seasonal leaf gas exchange and water potential in a woody cerrado species community , 2004 .

[23]  Guillaume Simioni,et al.  Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occurring savanna tree species. , 2004, Tree physiology.

[24]  Christie Allan,et al.  The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna , 2003 .

[25]  G. Goldstein,et al.  Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels , 2003 .

[26]  N. Holbrook,et al.  The ‘hydrology’ of leaves: co‐ordination of structure and function in temperate woody species , 2003 .

[27]  N. Michele Holbrook,et al.  Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits1 , 2003, Plant Physiology.

[28]  A. Nardini,et al.  Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree) , 2003 .

[29]  N. Holbrook,et al.  Hydraulic and photosynthetic co‐ordination in seasonally dry tropical forest trees , 2002 .

[30]  R. Borchert,et al.  Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain , 2002, Trees.

[31]  Frederick C Meinzer,et al.  Hydraulic redistribution of soil water by neotropical savanna trees , 2001 .

[32]  R. Marquis,et al.  16. Interactions Among Cerrado Plants and Their Herbivores: Unique or Typical? , 2002 .

[33]  G. Goldstein,et al.  Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species , 1999 .

[34]  A. Franco Seasonal patterns of gas exchange, water relations and growth of it Roupala montana, an evergreen savanna species , 1998, Plant Ecology.

[35]  J. Boone Kauffman,et al.  Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire , 1998, Journal of Tropical Ecology.

[36]  Frederick C. Meinzer,et al.  Stem water storage and diurnal patterns of water use in tropical forest canopy trees , 1998 .

[37]  François Tardieu,et al.  Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours , 1998 .

[38]  R. Borchert,et al.  Soil and Stem Water Storage Determine Phenology and Distribution of Tropical Dry Forest Trees , 1994 .

[39]  P. Nobel,et al.  Water Influx Characteristics and Hydraulic Conductivity for Roots of Agave deserti Engelm. , 1990 .

[40]  J. Sperry,et al.  Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? : answers from a model. , 1988, Plant physiology.

[41]  J. Sperry,et al.  Mechanism of water stress-induced xylem embolism. , 1988, Plant physiology.

[42]  A. Granier,et al.  Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. , 1987, Tree physiology.

[43]  G. Goldstein,et al.  ADAPTIVE STRATEGIES OF WOODY SPECIES IN NEOTROPICAL SAVANNAS , 1985 .

[44]  P. Nobel,et al.  Rectifier-like Activities of Roots of Two Desert Succulents , 1984 .

[45]  Melvin T. Tyree,et al.  The Measurement of the Turgor Pressure and the Water Relations of Plants by the Pressure-bomb Technique , 1972 .

[46]  Ken Thompson,et al.  Plant physiological ecology, 2nd edn. , 2009 .

[47]  P. Franks,et al.  Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. , 2007, Plant, cell & environment.

[48]  G. Goldstein,et al.  Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status. , 2006, Plant, cell & environment.

[49]  Mariana Inés Saraceno Efeitos da fertilização a longo prazo no metabolismo fotossintético, nas características foliares e no crescimento em árvores do cerrado , 2006 .

[50]  M. Canny Embolisms and refilling in the maize leaf lamina, and the role of the protoxylem lacuna. , 2001, American journal of botany.

[51]  A. Tyree,et al.  Vulnerability of Xylem to Cavitation and Embolism , 1989 .

[52]  P. Furley,et al.  Soil resources and plant communities of the central Brazilian cerrado and their development , 1988 .

[53]  A. Granier Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres , 1985 .

[54]  Neil C. Turner,et al.  Turgor maintenance by osmotic adjustment: a review and evaluation. , 1980 .

[55]  O. M.Z.M Hydraulic lift in a neotropical savanna , 2022 .