Characterizing electron temperature gradient turbulence via numerical simulation

Numerical simulations of electron temperature gradient (ETG) turbulence are presented that characterize the ETG fluctuation spectrum, establish limits to the validity of the adiabatic ion model often employed in studying ETG turbulence, and support the tentative conclusion that plasma-operating regimes exist in which ETG turbulence produces sufficient electron heat transport to be experimentally relevant. We resolve prior controversies regarding simulation techniques and convergence by benchmarking simulations of ETG turbulence from four microturbulence codes, demonstrating agreement on the electron heat flux, correlation functions, fluctuation intensity, and rms flow shear at fixed simulation cross section and resolution in the plane perpendicular to the magnetic field. Excellent convergence of both continuum and particle-in-cell codes with time step and velocity-space resolution is demonstrated, while numerical issues relating to perpendicular (to the magnetic field) simulation dimensions and resolution are discussed. A parameter scan in the magnetic shear, s, demonstrates that the adiabatic ion model is valid at small values of s (s < 0.4 for the parameters used in this scan) but breaks down at higher magnetic shear. A proper treatment employing gyrokinetic ions reveals a steady increase in the electron heat transport with increasing magnetic shear, reaching electron heat transport rates consistent with analyses of experimental tokamak discharges. (c) 2006 American Institute of Physics.

[1]  B. G. Hong,et al.  Toroidal electron temperature gradient driven drift modes , 1988 .

[2]  Bruce I. Cohen,et al.  The numerical tokamak project: simulation of turbulent transport , 1995 .

[3]  F. Jenko,et al.  Electron temperature gradient turbulence. , 2000, Physical review letters.

[4]  Marshall N. Rosenbluth,et al.  POLOIDAL FLOW DRIVEN BY ION-TEMPERATURE-GRADIENT TURBULENCE IN TOKAMAKS , 1998 .

[5]  Y. C. Lee,et al.  Collisionless electron temperature gradient instability , 1987 .

[6]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[7]  Jeff M. Candy,et al.  The local limit of global gyrokinetic simulations , 2004 .

[8]  W. B. Thompson,et al.  Advances in plasma physics , 1968 .

[9]  Liu,et al.  Model for thermal transport in tokamaks. , 1986, Physical review letters.

[10]  T. Hahm,et al.  Shearing rate of time-dependent E×B flow , 1999 .

[11]  Zhihong Lin,et al.  Role of nonlinear toroidal coupling in electron temperature gradient turbulence , 2005 .

[12]  Williams,et al.  Scalings of Ion-Temperature-Gradient-Driven Anomalous Transport in Tokamaks. , 1996, Physical review letters.

[13]  P. Diamond,et al.  Turbulence spreading into the linearly stable zone and transport scaling , 2003 .

[14]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[15]  Shinji Tokuda,et al.  Global profile effects and structure formations in toroidal electron temperature gradient driven turbulence , 2005 .

[16]  Jeff M. Candy,et al.  Gyrokinetic turbulence simulation of profile shear stabilization and broken gyroBohm scaling , 2002 .

[17]  Charlson C. Kim,et al.  Comparisons and physics basis of tokamak transport models and turbulence simulations , 2000 .

[18]  R. Waltz,et al.  Electron heat transport in improved confinement discharges in DIII-D , 1998 .

[19]  Peter J. Catto,et al.  Short wavelength effects on the collisionless neoclassical polarization and residual zonal flow level , 2006 .

[20]  Frank Jenko,et al.  Radial and zonal modes in hyperfine-scale stellarator turbulence , 2002 .

[21]  Kikuchi Mitsuru,et al.  Reduced transport and E r shearing in improved confinement regimes in JT-60U , 1999 .

[22]  Y. Kishimoto,et al.  Numerical study of zonal flow dynamics and electron transport in electron temperature gradient driven turbulence , 2004 .

[23]  M. R. Wade,et al.  Effect of rotation on H-mode transport in DIII–D via changes in the E×B velocity shear , 2002 .

[24]  F. Jenko,et al.  Prediction of significant tokamak turbulence at electron gyroradius scales. , 2002, Physical review letters.

[25]  W. Dorland,et al.  Discrete Particle Noise in Particle-in-Cell Simulations of Plasma Microturbulence , 2005 .

[26]  C. D. Challis,et al.  Predictive modelling of JET optimized shear discharges , 1999 .

[27]  Benoit Labit,et al.  Global numerical study of electron temperature gradient-driven turbulence and transport scaling , 2003 .

[28]  Z. Lin,et al.  Size scaling of turbulent transport in magnetically confined plasmas. , 2002, Physical review letters.

[29]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[30]  Y. Kishimoto,et al.  Dynamics of large-scale structure and electron transport in tokamak microturbulence simulations , 2005 .

[31]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[32]  R. Waltz Coupled ITG/TEM-ETG Gyrokinetic Simulations , 2006 .

[33]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[34]  S. S. Medley,et al.  Confinement studies of auxiliary heated NSTX plasmas , 2004 .